
Accelerate Digital Transformation
with Self-Provisioning Catalog-based
Infrastructure as a Code Strategy

Whitepaper

Contents

1. Introduction 03

2. Executive summary 04

3. Common challenges at the infrastructure layer 04

4. Use case for self-provisioning catalog-based Infrastructure as Code (IaC) 05

5. Scenarios for iac and future mode of operations 06

6. Key benefits of using IaC 07

7. Roadmap for implementing Infrastructure as Code layer with maturity model 08

8. Building blocks for Infrastructure as Code layer 09

 8.1. Infrastructure as code tool enablement 09

 8.2. IaC architecture and catalog-based demand execution 09

 8.3. Provisioning 10

 8.4. Compliance 11

 8.4.1. Sentinel policy as code 11

 8.4.2. Automated policy enforcement 11

 8.4.3. Cost management via policy enforcement 11

 8.4.4. Audit logging 11

 8.5. Workflow integrations with version control systems 12

 8.6. Continuous Integration, Continuous delivery (CI/CD) pipeline 13

 8.7. Catalog-based IT Service Management (ITSM) 13

9. Next steps to get started on the Infrastructure as Code journey 13

10. Conclusion 14

11. External references 14

12. About the author 15

03

Introduction

Success in transformation demands a focus on three

critical technological pillars: the cloud, IT

infrastructure, and security and compliance. To

accomplish agility and other digital transformation

goals, it is necessary to streamline management and

configuration workflows across all three pillars.

Streamlining workflows increases responsiveness

and frees up the resources and support needed for

innovation.

Organizations will face technical obstacles and traps

as they embark on their digital transformation path

via cloud. The correct tools and someone to help you

along the way are critical components of a successful

digital transformation through the cloud.

89%
of companies
already plan to
adopt a digital-first
business strategy

Moving to the cloud means doing things in a

new way. The basics of data centers are

changing; instead of fixed structures, we now

have flexible ones. Security and networking are

based on who you are, and they are not just a

number. We're also using automatic self-service

systems instead of old-fashioned ticketing.

This switch helps things get done faster and

makes it quicker to bring products to market.

However, it also creates many old tools and

processes outdated. Companies need to adapt

to flexible and efficient workflows at every

level, to make the most of cloud computing.

This is especially true for the infrastructure

layer, where we're changing how we set up and

manage things. We're now using a system that

codes infrastructure, keeps a good record, and

manages the whole life of that infrastructure.

These changes lay the foundation for crucial

shared cloud services. Teams in organizations

use these services to cut costs, reduce risks,

and speed up their work.

04

Executive summary

Terraform automates cloud/on-prem infrastructure
provisioning and security with declarative
infrastructure and policy as code. Infrastructure
and policies are executed within a consistent
workflow across the entire infrastructure after it is
codified, shared, and versioned.

ServiceNow handles incidents, service requests,
problems, changes, and catalog regular IT service
requests.

For catalog-based IaC setup and provisioning, we
have considered Terraform and ServiceNow tools
as the key components in our journey towards
catalog-based Infrastructure as Code.

This paper explores making the first part of how a
cloud works better, specifically looking at the
infrastructure layer. The main idea is to get the most
out of it by using something called "Infrastructure as
Code" in the framework of how the cloud works. It's
like having a plan that grows as you get better at it.

Adopting Infrastructure as Code (IaC) is one of the
best approaches to automating infrastructure. IaC is
the process of controlling and providing
infrastructure through readable definition files
rather than real hardware configurations or
interactive configuration tools. It applies to bare
metal servers, virtualized systems, and the cloud.

Terraform for IaC and ServiceNow for IT service and
operations management are widely used tools by
most organizations.

Common challenges at the infrastructure layer

Addressing challenges at the infrastructure layer becomes paramount as organizations transition from

on-premises setups to the cloud. New demands emerge, and operators must navigate these complexities:

Scale

Teams aim to swiftly adjust
their infrastructure
capacity, accommodating
fluctuations without errors
amid potentially extensive
configuration changes.

Variety

Unified provisioning
workflows are sought
across various platforms,
streamlining operations
and ensuring a cohesive
approach to diverse
environments.

Dependencies

Within the provisioning
workflow, teams seek the
inclusion and automation
of existing services and
dependencies, enhancing
efficiency and reducing
manual intervention.

05

Catalog-based Infrastructure as Code provides

organizations with a powerful solution to manage

and scale their infrastructure efficiently.

Maintaining a catalog of reusable components and

automating provisioning processes can help the

company meet customer demands, reduce

operational overhead, and ensure the consistency

and security of its IT Systems.

At the core of a cloud operating model lies

infrastructure provisioning, driven by the principles

of Infrastructure as Code (IaC). By translating

infrastructure into code, teams can clearly define the

desired end state of a deployment. This not only

ensures consistency across deployments but also

enables tracking and auditing of changes made to

the code. The transformative shift to IaC establishes

a foundation for efficient and error-resistant cloud

operations, aligning with the evolving needs of

dynamic and diverse cloud environments.

Use case for self-provisioning catalog-based
Infrastructure as Code

Figure 1 denotes the problem statement faced by many organizations, along with a solution.

Scenarios for IaC and future mode
of operations

 Figure 2 denotes key scenarios for IaC implementation along with future modes of operations.

07

Key benefits of using IaC

IaC uses a code to define, deploy, and maintain infrastructure resources. This approach offers many benefits, such

as increased efficiency, reliability, and agility in managing IT infrastructure. Some key benefits of using

Infrastructure as Code are:

Faster time to production/market

IaC automation dramatically speeds the process

of provisioning infrastructure for development,

testing, and production (and for scaling or taking

down production infrastructure as needed).

Lower costs and improved ROI

In addition to dramatically reducing the time, effort,

and specialized skill required to provision and scale

infrastructure, IaC lets organizations take maximum

advantage of cloud computingʼs consumption-based

cost structure. It also enables developers to spend

less time on plumbing and more time developing

innovative, mission-critical software solutions.

Portability

IaC makes it easier to move infrastructure

configurations across different cloud providers or

environments. This portability is beneficial for

organizations employing a multi-cloud or hybrid

cloud strategy.

Collaboration

IaC promotes collaboration between development

and operations teams. Both teams can work on the

same codebase, improving communication and

ensuring that infrastructure requirements align with

application development goals.

In summary, Infrastructure as Code enhances

automation, consistency, collaboration, and

efficiency in managing and deploying infrastructure,

making it a crucial practice in modern DevOps and

cloud-based environments.

Improved consistency—
less ʻconfiguration driftʼ

Configuration drift occurs when ad-hoc

configuration changes and updates result in

mismatched development, test, and deployment

environments. This can result in issues at

deployment, security vulnerabilities, and risks

when developing applications. IaC prevents drift

by provisioning the same environment every time.

Faster, more efficient development

By simplifying provisioning and ensuring

infrastructure consistency, IaC can confidently

accelerate every phase of the software delivery

lifecycle. Developers can quickly provision

sandboxes and continuous integration/continuous

deployment (CI/CD) environments.

Protection against churn

Provisioning is delegated to a few skilled engineers or

SMEs to maximize efficiency in organizations without

IaC. If one of these specialists leaves the organization,

others are sometimes left to reconstruct the process.

IaC ensures that provisioning intelligence always

remains with the organization.

RoadMap for implementing Infrastructure
as Code layer with maturity model

The maturity model stages for the infrastructure as code layer involve the strategic development of three key
components as organizations advance in their infrastructure implementation:

In each of these critical areas, organizations are advised to navigate through the maturity model stages—adopting,
standardizing, and scaling—to formulate a robust implementation roadmap. This strategic approach ensures a systematic
and well-orchestrated progression toward an optimized and scalable Infrastructure as Code layer.

Best-in-class provisioning
workflow

• Adopting: The initial phase
focused on integrating new
provisioning workflows.

• Standardizing: Establishing
uniform practices for increased
efficiency.

• Scaling: Expanding the
workflow capabilities for
broader applications.

System of record for enhanced
visibility (Day 2 operations)

• Adopting: Introduction of a
foundational system for
recording operations.

• Standardizing: Implementing
consistent practices to
enhance visibility.

• Scaling: Elevating the system
to meet the evolving needs of
operations.

Resource management system
for infrastructure lifecycle

• Adopting: Initiating a system
to manage the lifecycles of
infrastructure components.

• Standardizing: Implementing
standardized procedures for
efficient management.

• Scaling: Expanding the
system's capabilities
to handle diverse
infrastructure lifecycles.

 Figure 3 denotes the implementation road map for IaC with maturity model stages.

Building blocks for Infrastructure
as Code layer

Organizations transitioning to this model aim for

both agility and control, swiftly delivering

products to markets and internal users. They

aspire to a state where workflows are consistent

across technologies, infrastructure, and service

provisioning are automated, and security aligns

with the speed and scope of automation. To

reach this state, organizations must:

• Enable real-time control and proactive

policy enforcement

• Remove manual processes and bottlenecks

• Centralize management and control across

technologies

8.2. IaC architecture and
catalog-based demand execution

A reference architecture for catalog-based IaC is

depicted below. Its primary constituents are

ServiceNow, VCS repository CI/CD pipelines, and

Terraform to create infra and application

resources for on-prem and multi-cloud

environments.

8.1. Infrastructure as Code tool
enablement

Terraform is a preferred tool for automating

both cloud and on-premises infrastructure.

It uses infrastructure as code to handle

provisioning and ensure compliance in the

cloud operating model.

Terraform automates the provisioning of cloud

infrastructure and services using an

infrastructure-as-code approach. Users specify

their desired infrastructure and services in a

configuration file using version control.

Terraform then translates these configurations

into API calls, automating resource

provisioning to minimize errors and build

failures. With open-source providers, it

supports quick creation and compatibility with

various types of infrastructure. It is the core for

automating cloud infrastructure, using

infrastructure and policy as code for

compliance and management in the cloud

operating model.

1. The user goes to the catalog and picks an item.

2. A request is triggered from ServiceNow to Terraform.

3. Workspaces are created in Terraform.

1. Terraform backend triggers Plan.

2. Cost and Policy checks are done

3. Based on SUCCESS, Apply is initiated.

4. Required Infrastructure is provisioned
in On-Prem or Cloud as per request

8.3. Provisioning

The Operating Model often begins by helping operations teams move from focusing solely on setting up specific

servers tied to similar infrastructure to using workflows that support a shift-left IT approach using Terraform for

Infrastructure as Code. This allows for on-demand capacity from different Cloud and service providers. To handle key

aspects of provisioning, like the quantity and distribution of services, the temporary and unchangeable nature of

resources, and deploying to various environments, organizations are shifting towards an automation-centered

operating model for cloud infrastructure.

Figure 4 denotes reference architecture for catalog-based Infrastructure as Code using Terraform.

10

8.4.1. Sentinel policy as code

Using Sentinel Policy as Code, various teams
(security, compliance, audit, finance, operations)
define policies within Terraform. These policies are
checked against each Terraform plan before
execution, allowing for preventive and proactive
policy implementation. This ensures adherence to
best practices and compliance with regulations.
Sentinel Policies offer different enforcement levels,
ranging from Advisory (warning without prevention)
to Soft Mandatory (requires override to break) and
Hard Mandatory (prevents provisioning if a policy is
violated).

8.4.2. Automated policy enforcement

Terraform ensures that Sentinel policies are applied
to workspaces before provisioning so that once an
organization sets a rule in Sentinel, no infrastructure
can be created that violates it—enforcement happens
automatically.

8.4.3. Cost management via policy enforcement

Sentinel enables the creation of cost-focused policies
that are automatically applied in the Terraform
workflow. Administrators can then approve major
changes or block specific workspaces from
surpassing set limits. For instance, policies can
prevent unnecessary provisioning of large, costly
machines or enforce overall budget constraints for
team deployments without specifying machine
types. Moreover, policies can dynamically allow a
certain level of monthly change but cap it at a
specified monetary limit.

8.4.4. Audit logging

Terraform Enterprise provides detailed audit logs for
organizations seeking insights into the resources
managed by Terraform. These logs record
information whenever any resource is changed,
allowing teams to track who made changes and what
those changes were. Many organizations use audit
logging to meet and maintain regulatory compliance.

8.4. Compliance

Traditional methods of preventing infractions rely on
IT as the gatekeeper to infrastructure. Policies are
typically understood informally within the IT team
and are not explicitly coded. If policies are enforced,
it's done manually by the gatekeeping organization,
hindering the speed and self-service advantages
offered by cloud infrastructure. While some teams
automate policy enforcement, they often use
post-provisioning scans, introducing risks during the
period before the infrastructure is scanned for
compliance. Lastly, some organizations opt for a least
common denominator approach to enforcement,
assuming all infrastructure is susceptible to specific
risks, neglecting unique vulnerabilities in different
parts of the organizational infrastructure.

Terraform manages cloud compliance and enhances
automation by enforcing policies during the
provisioning process. This proactive policy
enforcement reduces risks, controls costs, and
boosts productivity through automation. This helps
minimize risks as organizations scale in the cloud.

Security and compliances aspects handled by
Infrastructure as Code are as below:

Enhancing security measures: Creating and enforcing
policies to prevent breaches is crucial. Examples of
security concerns include:

• Limiting vulnerable app versions

• Restricting resources with public IP addresses

• Prohibiting security groups with egress 0.0.0.0

• Allowing the use of only approved modules

Ensuring regulatory compliance: Establishing and
enforcing policies to prevent regulatory
noncompliance is vital. Examples of regulatory
concerns encompass:

• GDPR

• FedRamp regulations

• HIPAA regulations

• PCI standards

11

8.5. Workflow integrations with Version Control Systems (VCS)

Typically, these configuration files are stored in a

Version Control System (VCS) repository linked to a

Terraform workspace. This connection allows users

to apply software engineering practices to version

and refine infrastructure as code. VCS and

Terraform Cloud serve as a delivery pipeline.

Terraform integrates with Azure DevOps, BitBucket,

Github, and Gitlab.

When you make changes in a linked Version

Control System (VCS) repository, Terraform will

automatically initiate a plan in all workspaces

connected to that repository. You can review this

plan for safety and accuracy in the Terraform UI

before applying it to set up the designated

infrastructure.

Many users incorporate Terraform's cloud

management capabilities into their existing

workflows or toolchains. Terraform facilitates this by

integrating with major Version Control Systems

(VCS), Continuous Integration/Continuous

Deployment (CI/CD) tools, and service management

tools. Additionally, it supports a comprehensive

REST API. These integrations enable organizations to

maintain operational consistency without

disruptingproductivity.

Terraform users describe infrastructure using a

straightforward, human-readable language called

HCL (HashiCorp Configuration Language). Users can

create their unique HCL configuration files or use

existing templates from the public module registry.

8.6. Continuous Integration,
Continuous Delivery (CI/CD) pipeline

Terraform is compatible with various CI/CD

pipelines like Jenkins, Circle, Travis, Gitlab, and

Github. Many users use Terraform's

programmability to automate much of their

provisioning workflow, ensuring compliance

through policy as code. Terraform's API-driven

runs enable flexible provisioning workflows

using an infrastructure-as-code approach,

suitable for any organization. In a continuous

integration (CI) system, changes in Terraform

code are monitored, and Terraform Cloud's REST

API is utilized for provisioning. This allows

organizations to include various actions in their

CI pipeline for infrastructure provisioning while

benefiting from Terraform Cloud's features like

private modules, state management, policy as

code (Sentinel), and more.

8.7. Catalog-based IT Service
Management (ITSM)

Terraform offers a seamless integration with ServiceNow.

ServiceNow facilitates digital workflow management,

promoting efficient collaboration within teams through a

user-friendly interaction process. The ServiceNow Service

Catalog acts as a storefront where various services can be

ordered by different individuals in the organization. This

often includes requests for cloud resources, such as

developers needing machines for code testing or the

finance IT team requiring infrastructure for new accounting

software. Organizations using the ServiceNow Service

Catalog can submit these requests through ServiceNow,

directing them to the appropriate team for Cloud

Infrastructure. Terraform automates provisioning through

infrastructure as code, ensuring security, compliance, and

cost-sensitive policies are applied to all resources during

provisioning. This enables teams less focused on coding to

easily adopt top-notch provisioning workflows and tools

while gaining proficiency in infrastructure as code.

Next steps to get started on the
Infrastructure as Code journey

Figure 5 denotes the potential next steps to get started on the Infrastructure as Code journey.

Workshops to get started
Assessment Workshop to generate esate details and scope for infra as code automation
Establishing scope and phase plans

Build and Implementation

Build and Deploy IaC as per defined scope

Next Steps

13

Conclusion

As organizations transition to the cloud operating model, they initially encounter the challenge of setting up cloud

infrastructure. Many believe that while the cloud provides speed, it also introduces new security risks, often leading

to the perception that addressing these risks might slow down processes. However, Terraform offers a robust

alternative by blending infrastructure as code for provisioning with policy as code for compliance and management.

This allows organizations to maintain both agility and control as they build expertise in infrastructure provisioning,

compliance, and management.

Using a maturity model allows these teams to create a detailed roadmap, outlining the organization's current position

and what steps are needed to reach its goals. This roadmap aids teams across the organization in making quicker and

better-informed decisions. Additionally, it facilitates benchmarking progress along the way.

External References

1. Gartner Says 89% of Board Directors Say Digital is Embedded in All Business Growth Strategies, Gartner, Oct 19, 2022:

https://www.gartner.com/en/newsroom/press-releases/2022-10-19-gartner-says-89-percent-of-board-directors-say-digit

al-is-embedded-in-all-business-growth-strategies

14

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to
reimagine business models, accelerate innovation, and maximize growth by harnessing digital technologies. As a digital
transformation partner to more than 700 clients, LTIMindtree brings extensive domain and technology expertise to help
drive superior competitive differentiation, customer experiences, and business outcomes in a converging world. Powered
by 83,000+ talented and entrepreneurial professionals across more than 30 countries, LTIMindtree — a Larsen & Toubro
Group company — combines the industry-acclaimed strengths of erstwhile Larsen and Toubro Infotech and Mindtree in
solving the most complex business challenges and delivering transformation at scale. For more information, please visit
https://www.ltimindtree.com/.

About the author

Sandip Bhide has over 22+ years of IT experience. He has led complex, large-scale solutions/ Implementation

programs in technology, consulting, presales and delivery. He has extensive experience in cloud transformation

projects across domains in BFSI, Life Science focusing on digital transformation, cloud native services, and

application modernization. He is part of the TechOffice and specializes in Cloud, IaC, and DevSecOps streams.

Sandip Bhide

