
By Sivakumar Kalyanaraman

©LTIMindtree | Privileged and Confidential 2023

Whitepaper

Consensus Algorithms in
Low Latency Sys tems

Table of Contents

1. Introduction ...

2. Failover and fault tolerance in financial exchanges

2.1 Monitoring and failover of HA cluster ..

2.2 Business constraints ..

3. A raft-based model for low-latency systems

4. Conclusion ...

5. References ...

6. Author ...

3

4

5

7

8

14

15

16

©LTIMindtree | Privileged and Confidential 2023

3©LTIMindtree | Privileged and Confidential 2023

 Introduction

As per the Oxford dictionary, consensus refers to an opinion that all group members agree with. A

common example of a consensus issue would be lunch with office peers. You decide a time and place,

but one friend has a last-minute meeting, another is caught up in a task, and another maybe 15 minutes

late due to a crisis. Since most of your friends are busy and don't agree, your plan gets canceled, and you

plan again.

Distributed systems work this way too. A group of servers must agree on some state for a given data.

Clustering and failover are parts of distributed computing used to achieve fault tolerance and

performance. When processing is done as a finite state machine within the processing node (with

memory state updates involved), the input is replicated to the primary and secondary nodes. This way,

the state is maintained across the replicas, and failover does not cause data inconsistency. Some critical

steps in such replicated state machines are - the replication guarantee, failure identification, and decision

on the next node that needs to take over the primary role in case of failure. Some basic ways to achieve

these include synchronous replication (the primary sends the input to all nodes, waits for

acknowledgment, and then processes the message), using a separate monitor server that listens to the

heartbeat from the primary and contains the logic for deciding subsequent primary in case of failure.

Such implementations significantly reduce the scalability of the replication cluster and make the monitor

node complex to implement. Algorithms such as Paxos and Raft have been published to handle

replication and failover scenarios for distributed clusters with unreliable nodes.

Paxos and Raft are consensus algorithms that allow the nodes in a distributed system to agree on a given

state or input sequence. Paxos is older, complex, abstract, and does not provide many implementation

details. It only considers the problem of achieving a common value for a single shared state. An input

replication technique must be built over Paxos, testing new API and semantics for all cases. Raft is a

simpler alternative with implementation details specified for all the operations – it specifies the various

Remote Procedure Calls (RPCs) and the behavior of each call. Moreover, Raft addresses the

implementation-level problem by consistently replicating input from the primary to the secondary nodes.

Thus, we see various open-source projects using Raft.

In this document, we discuss some changes to the basic Raft model to make it more suitable for

applications like trading systems, where latency is as much or more critical as fault tolerance. For systems

where the latency impact to replication is acceptable, this approach cannot be used when weighed

against the degree of fault tolerance needed.

01

4©LTIMindtree | Privileged and Confidential 2023

Failover is the ability to switch automatically to a reliable backup system. This mechanism works

on computer servers that collaborate to ensure High Availability (HA) or Continuous Availability (CA)

for server applications. The clusters that guarantee CA are also known as Fault Tolerant (FT) clusters

because they allow users to work on applications without witnessing any outages due to a server

crash. If one server goes down, another cluster node can handle its workload without interruptions.

In FT clusters, monitoring/heartbeat messages are used for heartbeat/health monitoring of the

cluster nodes. The absence of such heartbeats or any inconsistency in the monitoring data sent out by

a node can be used to determine if the node is down (either component failure or data

inconsistency due to which the node is unusable).

In financial exchanges, FT is one of the critical features that must be implemented at all the layers.

Critical components like the trading engine maintain a significant internal state (order book, trades,

etc.), and to implement fault tolerance of such components, input replication is used to ensure the

same input is processed by the primary node and all secondary nodes of the cluster. Input replication

ensures that the primary and secondary nodes are identical and in sync. Another replication method is

output replication, wherein the output from the primary is sent to the secondaries so that they can

rebuild the internal state based on the output. But here, the secondaries will have a different execution

path, and hence is more complex to implement and debug. Hence, log replication in raft consensus

algorithms and leader election (identifying the next primary in case a primary fails) are critical for

trading applications.

02Failover and fault tolerance
in financial exchanges

5©LTIMindtree | Privileged and Confidential 2023

2.1 Monitoring and failover of HA
cluster
Monitoring and failover in such a setup can be done in several ways, as described below.

Using an observer/controller node

In this design, an observer/controller node is used to listen to the heartbeat/health monitor messages from

all the nodes. In case of a missing heartbeat/incorrect health monitor messages, the controller node acts

by marking the node as down or initiating failover if the primary node is identified as down/inconsistent.

In this model, the controller node should run on fault-tolerant hardware to ensure it does not go down.

This node becomes a single point of failure for the entire system. Also, the controller system software

must be simple, and the Finite State Machine must be validated for all valid and invalid inputs. A variation

of this design is where all the nodes monitor the heartbeat/health monitor messages, but all discrepancies

are reported to the controller node for action.

Fig 1: Observer-Controller: Windows Clusters and Quorum configurations explained, JeffOps-The Scripting Dutchman,

December 22, 2011: https://jeffwouters.nl/index.-/2011/12/windows-clusters-and-quorum-configurations-explained/

6©LTIMindtree | Privileged and Confidential 2023

Homogeneous cluster with any node being the leader

In this design, any of the nodes in the cluster can be the leader (master node), and other nodes are the

followers (secondary or slave node). All the nodes process heartbeat and monitoring information. If a

heartbeat is missed or an information mismatch, the nodes together determine the action to take by

exchanging control messages. There is no separate control node.

Fig 2: Raft consensus algorithm, YugabyteDB :

https://www.yugabyte.com/tech/raft-consensus-algorithm/

In this scenario, most of the alive nodes must arrive at a consensus on the change in system state (node

down or node faulty) and the action to be taken (who is the new master). We can use consensus

algorithms such as Raft for state change confirmation and new leader election.

7©LTIMindtree | Privileged and Confidential 2023

2.2 Business constraints
Adopting either of these failover models depends on the business constraints the failover solution must

satisfy. These business constraints are as critical as the fault tolerance requirements in financial

exchanges. These constraints are:

Impact on latency

The decision on a node confirmed to be down and designating a new node as the primary could

take time, depending on the approach. During this time, the system will not be responding to any

external requests and hence will affect the system latency. The approach (observer-based vs.

identical nodes) and the algorithms for failure detection and master identification are critical to

ensure minimal latency. Moreover, in the case of the homogeneous nodes approach, the

heartbeat/health message processing should incur minimal or no overhead to the regular processing;

otherwise, it could cause a significant latency overhead even when all nodes are healthy.

Time to failover
The time to failover is from when a node failure is confirmed and a new primary is identified to

when the new node takes over as primary and is fully connected to other subsystems and

servicing requests. This will include any state synchronization to be done among the nodes, state

changes in all the cluster nodes, notification acknowledgments, and synchronization needed

with other subsystems. This time must be minimal so external users do not feel a high latency

during failover. The state transition implementations and the amount of synchronization needed

should be kept to a minimum to optimize this time.

Multi-node failure
In case of multi-node failure, the ratio number of nodes failed to the total

number of nodes in the cluster determines the impact on business. If the ratio

is < 0.5, the system will still be fault tolerant. If the ratio is > 0.5, some

consensus algorithms may not work (their preconditions would not be met).

Hence the system may lose its fault tolerance features. This impacts the

business and requires manual intervention to restore fault tolerance.

8©LTIMindtree | Privileged and Confidential 2023

As discussed in the previous sections, log replication and synchronizing inputs across replicated

nodes help achieve fault tolerance against hardware faults. Raft handles log replication, node failures,

and new leader elections, serving as a protocol for input replication in a distributed system. One of

Raft's key tenets/requirements is that the master node begins processing the input message from the

replicated log only when the log entry is committed. A committed log entry is one for which most

followers have acknowledged receipt of the log entry.

Given the load and throughput requirements, low-latency systems used in the financial exchanges

domain have latencies in milliseconds or microseconds range. In such systems, the leader waiting for

most followers to acknowledge receipt of a message before processing the message could cause a

significant increase in message latency. For example, let us consider a system with a latency of 25

microseconds. Considering the leader sends the AppendEntries RPC and immediately gets a response

from all the followers, the network's send + receive time would be three microseconds. This may be

seen as just a 12% increase in the latency, but simulating the three micro-seconds extra latency due to

replication for a system processing 100K messages per second shows that the average response time

more than doubles.

Scenario Average response time Max response time

100K messages,

5 processing steps

100K messages,

5 processing steps

+ 3 microseconds
for replication of messages

533

1196

566

1256

A raft-based model for
low-latency systems03

9©LTIMindtree | Privileged and Confidential 2023

This indicates a delay incurred before the message reaches the state machine can significantly impact the

overall system latency.

The alternative we propose is for the replication checkk after message processing by the state machine is

completed. This goes against one of the key tenets of Raft; however, it will help to avoid the latency

increase due to replication. This is a feasible approach with network architectures that guarantee higher

reliability and commodity servers having higher uptime.

We propose changes in Raft's RPC semantics for log replication and matching in our approach.

The following table summarizes our proposed changes:

Impact area Raft behavior Proposed change

Pass Input to the state machine

Followers having inconsistent

log entries with the leader –

different entries at a given Log

Index

Waiting for ACK from n+1

followers (assuming cluster of

2n+1 nodes)

Input is sent to the state

machine only after log

replication is completed, i.e.,

replication Acknowledgement

(Ack) is received from n+1

followers in a cluster of 2n+1

nodes

The leader flushes the log at

the follower until the logs are

in sync, and then all

subsequent entries are

replicated from leader to

follower

If Ack is not received from n+1

followers, the leader pauses.

The system is halted until at

least n+1 nodes are back in the

cluster

None

Input is sent to the state machine

in parallel to log replication.

Replication completion is verified

before the processed output is

sent out.

The only recovery option is to

start from a clean state and

replicate the leader's log from

the beginning. Entries present in

the follower's log cannot be

deleted, as they have already

been sent to the state machine.

10©LTIMindtree | Privileged and Confidential 2023

Impact area Raft behavior Proposed change

logIndex variable

Log sync with the followers

The commitIndex is the log

entry that the leader has

processed, and all entries up to

this are expected to be in sync,

in all the active current nodes

Log sync is guaranteed by a

consistency check performed

by AppendEntries RPC. If the

consistency check fails, the

leader decrements nextIndex

and retries to match the index

and term of the entry. Once a

match is found, conflicting

entries in the follower's log are

deleted

This is also the log entry that the

given node has processed, and it

is expected that the logIndex of

the leader will always be >=

logIndex of all active current

nodes

Log sync is guaranteed by a

consistency check performed by

AppendEntries RPC. In case of

consistency check failure, the

follower responds with the Index

up to which it has the data. The

leader now updates this and

sends the log from the next

Index to that follower. In case the

leader's term and the follower's

are different, the follower must

request a log sync from the

beginning of the leader's log

Table 1: Summary of proposed changes

11©LTIMindtree | Privileged and Confidential 2023

The following tables illustrate the change in AppendEntries RPC.

Invoked by leader to replicate log entries, also used as heartbeat

Arguments

term leader’s term

leaderId so follower can redirect clients

prevLogIndex index of log entry immediately preceding
new ones

prevLogTerm term of prevLogIndexentry

entries [] log entries to sore (empty for heartbeat)

leaderCommit leader’s commitIndex

Results

term currentTerm, for leader to update itself

success true if follower contained entry matching
prevLogIndexand prevLogTerm

Receiver Implementation

1. Reply false if term < currentTerm

2. Reply false if log doesn’t contain an entry at prevLogIndex
whose term matches prevLogTerm

3. If an existing entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it

4. Append any new entries not already in the log

5. If leaderCommit> commitIndex, set commitIndex=
min(leaderCommit, index of last new entry)

AppendEntries RPC

Invoked by leader to replicate log entries, also used as heartbeat

Arguments

term leader’s term

leaderId so follower can redirect clients
prevLogIndex index of log entry immediately preceding

new ones
prevLogTerm term of prevLogIndexentry

entries [] log entries to store (empty for heartbeat;)

leaderCommit leader’s commitIndex

Results

term currentTerm, for leader to update itself

success true if follower contained entry matching

purgeClient true if follower is purging it’s log (leader
must now sync the log from beginning)

prevLogIndex The term and Index up to which the
prevLogTerm follower has the Log data

Receiver Implementation

1. Reply false if term < currentTerm

2. Reply false if log doesn’t contain an entry at prevLogIndex

whose term matches prevLogTerm

3. If an existing entry conflicts with a new one (same index

but different terms), purge the log and set purgeClient to true.
Return false

4. Append any new entries not already in the log

5. Send the Log Entries to the Finite State Machine for processing

AppendEntries RPC

Fig 3: Original Implementation Fig 4: Modified Implementation

12©LTIMindtree | Privileged and Confidential 2023

The below illustration describes the possible cluster of order matching engines (used in the trading

domain), with the modified Raft consensus algorithm used for the replication and leader election. Only

the leader communicates external systems. The first diagram shows the replication flow with the Raft

protocol, and the second shows the proposed modified flow. Some basic characteristics of order

matching are:

1. All the processes are single-threaded, and the order messages are processed sequentially.

2. The processor Finite State Machine (FSM) mentioned below is responsible for the actual order

processing and updating of the order book (maintaining the internal state of the node). The state is

accessible only to this process.

3. If the processor encounters a fatal error during processing, it shuts down, marking that node as

down (in case of this being the leader, this will trigger the leader election).

4. While the followers receive the messages from the leader and process them (and update their

internal state), the output handlers act as message sinks and do not send any outputs to the other

connected systems. Only the output handler of the leader sends out messages.

Input Handler Input Formatter Processor (FSM) Output Formatter Output Handler

Input Handler Input Formatter Processor (FSM) Output Formatter Output Handler

Replication Handler

R E P L I C AT I O N L AY E R

1

3 6

4 5

8

2 7

Fig 5: Replication with regular Raft flow

The flow of the steps is as follows:

1. Message received from the client

2. Input handler and formatter format the message

3. Raft is used to replicate the message to the follower(s). The log is sent to the follower, and the leader

waits for Ack before proceeding

4. Now the message is sent to the processor for actual processing

5. The message is also sent to the processor at the follower

6. After processing the message, the response is sent to the client

The following diagram depicts the modifications in the Raft protocol:

Leader

Follower

13©LTIMindtree | Privileged and Confidential 2023

Input Handler Input Formatter Processor (FSM) Output Formatter Output Handler

Input Handler Input Formatter Processor (FSM) Output Formatter Output Handler

Replication Handler

R E P L I C AT I O N L AY E R

1

3a

4 6

5

2 3b

Fig 6: Replication with modified Raft flow

The flow of the steps is as follows:

1. Message received from the client.

2. Input handler and formatter format the message.

3. Raft is used to replicate the message to the follower(s). The log is sent to the follower.

4. Now the message is sent to the processor for actual processing.

5. The message is also sent for processing at the follower.

6. Follower acknowledges the message.

7. After processing the message, the leader waits for Ack from followers.

8. Thereafter the response is sent to the client.

The leader does not wait for the network hop of followers to receive the log and send acknowledgment

before processing the message. It processes the message and then checks for acknowledgment. Since

these two operations happen in parallel, there is no impact on the latency during normal operations. If

n+1 nodes do not acknowledge, the leader will wait for the acknowledgment, as in the current case of

Raft.

We believe such tweaks to Raft will increase its adoption and allow enterprises to use proven algorithms

for fault tolerance capabilities against building in-house solutions. In-house solutions need to cater to

multiple state transition scenarios requiring significant testing before they can be deployed.

7

Leader

Follower

14©LTIMindtree | Privileged and Confidential 2023

Input replication and leader election are critical for achieving fault tolerance in distributed systems.

While these could be achieved using custom implementations, protocols like Paxos and Raft are

designed for the same. Raft is a more complete and detailed protocol that can be used to

arrive at a usable implementation with limited ambiguities. Various open-source projects use

variations of Raft, as shown above.

The simulation above shows that input log replication and sending confirmations could significantly

increase the latency. In systems where low/ultra-low latency is a crucial Non-Functional Requirements

(NFR) along with fault tolerance, our proposed change to the Raft protocol will guarantee fault tolerance

without increasing the latency.

With better hardware and network infrastructure, hardware failures (such as N nodes going down in a

cluster of 2N + 1 nodes or only one node receiving the replicated messages) are expected to happen less

frequently. We believe that the leader can ensure replication completeness after processing the message.

The network latency for message sending and receiving an ack will be comparable to the processing time

for the message, and hence there should be no impact on latency due to replication. If a follower detects

log inconsistency and requests a log sync from the beginning, there will be additional latency before it

can sync up and be up to date with the leader.

By slightly modifying the appendEntries RPC, a follower can also request the input log from the

beginning from the leader. This can be used by followers whenever they see that the log-in leader and

follower are not in sync.

Thus, the suggested change will offer an option to use Raft even in low-latency systems. Such an

implementation must be validated for state machine correctness for all possible state changes.

With this proposed change to Raft, we believe that it can be more widely adopted in financial

exchanges/trading application domains for building fault-tolerant systems. Raft's leader election and log

replication logic can be used, thereby ensuring correctness, which is already established for Raft. This will

reduce the testing needed for the actual replication and failover (leader election logic) against testing a

custom implementation of the complete replication and failover logic.

Conclusion04

15©LTIMindtree | Privileged and Confidential 2023

▪ The Part-Time Parliament, Leslie Lamport, Association for Computing Machinery, May 2,
1998:
http://lamport.azurewebsites.net/pubs/lamport-paxos.pdf?from=https://research.microsoft.com/users/l
amport/pubs/lamport-paxos.pdf&type=path

▪ Paxos Made Simple, Leslie Lamport, Association for Computing Machinery, December 2001:
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/?from=https://research.mi
crosoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf&type=exact

▪ Paxos Made Live: An Engineering Perspective, Tushar Chandra, Robert Griesemer, Joshua
Redstone, Association for Computing Machinery, June 20, 2007:
https://read.seas.harvard.edu/~kohler/class/08w-dsi/chandra07paxos.pdf

▪ Paxos Lecture, John Ousterhout and Diego Ongaro, Stanford University, August 15, 2013:
https://www.youtube.com/watch?v=JEpsBg0AO6o&t=28s

▪ Consensus in the Cloud: Paxos Systems Demystified,�Ailijiang, Charapko, & Demirbas, The
25th International Conference on Computer Communication and Networks (ICCCN), 2016:
http://www.cse.buffalo.edu/~demirbas/publications/cloudConsensus.pdf%22%20/t%20%22_blank

▪ Raft: In Search of an Understandable Consensus Algorithm, Ongaro, Diego, & Ousterhout,
USENIX Annual Technical Conference (USENIX ATC 14), 2014:
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14%22%20/t%20%22_blank

▪ The Secret Lives of Data – Visual explanation of Raft : http://thesecretlivesofdata.com/raft/

▪ ARC: Analysis of Raft Consensus, Heidi Howard, Technical Report UCAM-CL-TR-857, July
2014: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-857.pdf

▪ Official overview website of materials on and implementations of Raft:
https://raft.github.io/%22 /t %22_blank

▪ Raft Lecture, John Ousterhout and Diego Ongaro, Stanford University, August 15, 2013:
https://www.youtube.com/watch?v=YbZ3zDzDnrw

▪ The Raft Consensus Protocol, Prof. Smruti R. Sarangi, IIT Delhi, April 2020 :
https://www.youtube.com/watch?v=oBlbpPDxs-M&t=2s

References05

16©LTIMindtree | Privileged and Confidential 2023

Sivakumar Kalyanaraman
Head – Performance Engineering Group, Global Technology Office

Sivakumar Kalyanaraman leads the High-Performance Engineering unit

within the Global Technology Office at LTIMindtree. He has worked on

various high-performance, low-latency computing projects and

spearheaded performance/reliability engineering of critical business

systems.

Author06

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to reimagine business

models, accelerate innovation, and maximize growth by harnessing digital technologies. As a digital transformation partner to more than 700

clients, LTIMindtree brings extensive domain and technology expertise to help drive superior competitive differentiation, customer experiences,

and business outcomes in a converging world. Powered by 82,000+ talented and entrepreneurial professionals across more than 30 countries,

LTIMindtree — a Larsen & Toubro Group company — combines the industry-acclaimed strengths of erstwhile Larsen and Toubro Infotech and

Mindtree in solving the most complex business challenges and delivering transformation at scale. For more information, please visit

https://www.ltimindtree.com/

