
Whitepaper

The Need for
Chaos Engineering in Modern
Architectures

P a r t I

Table of Contents

1 Excecutive Summary ...3

2 Introduction 4

3 Understanding the Unplanned Downtimes and Their Impacts 5

4 The Complexity of Distributed Architectures ...

7

5 Limitation of Current Testing Methods ...10

6 Visualizing Failures in Modern Architecture ...11

©LTIMindtree | Privileged and Confidential 2023

7 Conclusion ...15

8

9

Authors ... 16

References ...17

The Need for Chaos Engineering in Modern Architectures

 ...

The Need for Chaos Engineering in Modern Architectures

Executive Summary01
The Need for Chaos Engineering in Modern Architectures

3

As the landscape of software development evolves, the imperative of maintaining high system

reliability and resilience has become paramount. This white paper explores the growing need for

Chaos Engineering in contemporary architectures, highlighting the challenges posed by unplanned

downtimes, the rapid pace of software releases, the intricate nature of distributed systems, and the

limitations of current testing methodologies.

To address these challenges, Chaos Engineering emerges as a pivotal approach. By intentionally

introducing controlled disruptions into production environments, organizations can uncover

vulnerabilities, identify weak points, and proactively enhance system resilience. The ability to

visualize and understand failures within modern architectures is a core component of Chaos

Engineering. By simulating various failure scenarios and observing their impact, teams can gain

insights into the complex interactions within their systems, facilitating more informed

decision-making and targeted improvements.

In conclusion, this white paper underscores the urgency of integrating Chaos Engineering into

modern software development practices. Through Chaos Engineering, companies can fortify their

systems against failures, enhance their understanding of system behaviors, and ultimately deliver

more robust and reliable services to their users.

©LTIMindtree | Privileged and Confidential 2023

Introduction02

©LTIMindtree | Privileged and Confidential 2023

The Need for Chaos Engineering in Modern Architectures

4

A recent Dzone report on the state of DevOps shows that nearly 70% of the surveyed

organizations make multiple monthly production releases. Speeding up releases will further

accelerate with the advancement in architecture patterns, tooling, cloud adoption, and

proliferation of ready-to-plug COTS solutions.

However, this has increased the complexity of the software and dependencies beyond traditional

boundaries, making it even more difficult for operations to meet the Service Level Objectives

(SLOs). The demands will continue to rise with increasing digital transformation, ever-demanding

customers, and increased competition. Hence, the traditional ways of validating the software's

readiness and reliability may not be adequate, and a different approach is necessary. One of the

options to mitigate the impact is to leverage Chaos Engineering along with existing validation

methods. We will delve into the intricacies of Chaos Engineering in two parts. Part I will cover the

following aspects:

1. Emphasizing the importance of uptimes

2. Evolution of software architectures and its impact on resilience

3. Limitation of traditional validation methods

4. Understanding of failures and failure domains in a modern architecture

By combining the subjective insights in the whitepaper with the objective analysis provided in the

next, we aim to offer a holistic view of Chaos engineering. Let’s begin!

Figure 1: Organizations’ Release Frequency, DZone, Feb. 16, 2023: https://dzone.com/trendreports/devops-4)

The Need for Chaos Engineering in Modern Architectures

©LTIMindtree | Privileged and Confidential 2023 5

Understanding the
Unplanned Downtimes and
Their Impacts

03
In 2016, Delta Airlines had a power failure causing three days of critical systems’ outage. As a result,

nearly 2000 flights were grounded. The losses were to the tune of USD 150 million. In 2018, on a

major Prime Day Sale, Amazon's multiple failures created a cascading impact. This resulted in a

revenue loss of around USD 99 million. In 2021 Facebook (Now Meta) had a network configuration

error resulting in 5.5 hours of outage impacting nearly 3.5 billion users. This resulted in a loss in

advertising sales of USD 60 million.

These incidents simply indicate the level of damage unplanned downtimes can bring to business-

es. While the above metrics emphasize the economic impacts, the cost of downtime is not merely

the loss of revenues. One needs to factor in both direct and indirect costs of such outages like the

ones below.

DIRECT COSTS INDIRECT COSTS

Lost revenues (Refer above)

Productivity losses (Troubleshooting,

Detection, Fixing, Validation, etc.), Employee

churns

Business disruption Legal & regulatory impacts

Brand impactsCustomer churn (Immediate & Eventual)

Data lossesFines

Table 1: Direct and Indirect costs of outages

The Need for Chaos Engineering in Modern Architectures

2

©LTIMindtree | Privileged and Confidential 2023

Various research firms (Gartner to Ponemon Institute) put the average cost of downtime to $9000

per minute. These numbers can spiral to millions of dollars/hr for some industries or systems.

Cloud migration may improve the uptime of systems in general, but that is not a panacea.

Hyperscalers, too, go down from time to time. Organizations have many years of experience and

maturity in building and running systems. They do have runbooks and run periodic drills.

Shouldn’t they be able to contain problems? Why should it be so difficult even for tech

organizations, even the likes of Facebook/Amazon, unable to prevent unplanned downtimes in

the modern era?

While there could be many factors, some prominent ones constraining the teams to address Mean

Time to Resolve (MTTR), Mean time to detect (MTTD), and Service Level Objectives (SLOs) are

mentioned below.

The rate of software release has gone many folds
Traditionally releases were done at monthly or quarterly intervals. This helped the operations team

easily maintain the runbooks and plan for failure. Many organizations for years did have break

failure simulations as part of their Standard Operating Procedures. But typically, they were

executed before going live for the first time, which may not be adequate for modern

infrastructures. With the speed of releases, running manual simulations and preparing for every

unforeseen situation is nearly impractical.

The Need for Chaos Engineering in Modern Architectures

6

6

The Complexity of
Distributed Architectures

04
As nicely put by Benoit Hediard in his article, software architecture has evolved over the

decades. Microservices Serverless architectures, and other recent variations have enabled the

independent evolution of services with improved ownership. Such separation greatly helped

teams to ship software faster and reliably.

But on the other hand, an application that used to be deployed with a single bundle into VMs or

on a physical machine is broken into tiny units(containers) and deployed into some orchestration

platforms(K8s), demanding multiple components and processes to work together to achieve the

same functionality.

Figure 2: The evolution of software architecture, Benoit Hediard, Benorama, May 29, 2015:
https://benorama.com/the-evolution-of-software-architecture-bd6ea674c477

The Need for Chaos Engineering in Modern Architectures

7

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore
magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl
ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie

©LTIMindtree | Privileged and Confidential 2023 8

Figure 3: Service Dependency Graph – Amazon, Werner Vogels, X, June 11, 2016:
https://twitter.com/Werner/status/741673514567143424

Figure 4: The butterfly effect, Wikipedia: https://en.wikipedia.org/wiki/Butterfly_effect

The quality-of-service offerings from Cloud Providers and modern architectures can significantly

improve reliability and resiliency. However, with such architectures, a new set of challenges

emerges. It is articulated well with the fallacies of distributed computing by Gosling and L Peter

Deutsch.

The network is
reliable

Latency is zero

Bandwidth is
infinite

The network
is secure

Topology doesn't
change

There is one admin

Transport cost is
zero

The network is
homogeneous

Figure 5: Fallacies of distributed computing

The Need for Chaos Engineering in Modern Architectures

©LTIMindtree | Privileged and Confidential 2023 9

Figure 2, is an original service dependency graph from Amazon that reveals the magnitude of

dependencies between services. These dependencies may involve several network calls with

varying payloads under varying load conditions serviced by different process instances. The

complexity of the landscape is truly overwhelming. This makes it more difficult to detect problems

(MTTD) and resolve them on time (MTTR).

 This leads us to Choas theory's butterfly effect, which shows that small changes in initial

conditions can lead to significantly different outcomes in complex systems.It is not the initial issues

that have such an impact; rather, the whole set of interdependencies makes the small changes

more vulnerable.

Though DevOps Tools are handy and enable shaping the observability of such platforms, they

alone will not be sufficient to prevent production issues.

©LTIMindtree | Privileged and Confidential 2023 9

The Need for Chaos Engineering in Modern Architectures

©LTIMindtree | Privileged and Confidential 2023 10

Limitations of Current
Testing Methods

05
Traditionally we apply various performance, penetration, and other testing methods to safeguard the

quality of our software. Most executions happen in lower environments, and we assume the

configurations, topologies, and production behaviors are identical. While these approaches might

have worked in the past, currently, they are inadequate due to ever-increasing dependencies

between components in a distributed architecture.

Stress Test

Load Test Endurance
Test

Volume
Test

Scalability
Test

Spike
Test

Dimensions of
Performance Testing

Figure 6: Dimensions of performance testing

Imagine scenarios like this and the challenges it brings to system conformance:

1. Can the application handle the same load if a part of the infrastructure is down?

2. If dependent services are down, will the application work under normal conditions?

3. How will the application behave if servers run out of memory or disk space?

4. Will the application exhibit similar behavior in successive executions?

5. What if latency is introduced on some of the services? Will it create a cascading impact?

Coupling scaling with resilience is essential to fully understand the concept of scaling.

Limitations of Current
Testing Methods

The Need for Chaos Engineering in Modern Architectures

©LTIMindtree | Privileged and Confidential 2023 11

Visualizing Failures in a
Modern Architecture06

While designing and preparing systems for resiliency, it is important to understand the impact of

architectural choices, the nature of failures one can anticipate, and how to arrive at patterns and

processes to address them.

Such patterns and processes are constrained by the architectural and design trade-offs we need to

make due to reasons not limited to operational and infrastructure costs, place of deployment

(on-prem/cloud), time to market, availability of tools, inter/intra-org dependencies, organization’s

technology standards, and roadmap. Let's run through two architectural patterns and their impact

on resiliency.

The diagram below is a simplified view of a typical monolithic deployment with redundancy for the

application layer. The application, as such, is deployed as a single bundle comprising multiple

modules. Traditionally, we have built our monolithic applications with sticky sessions, thus having an

affinity to specific nodes.

App Node 1

Process

Module 1 Module 2

Module n

App Node 2

Process

Module 1 Module 2

Module n

Offsite

DC

Web Node

Process

Figure 7: Monolothic Deployment

The Need for Chaos Engineering in Modern Architectures

12©LTIMindtree | Privileged and Confidential 2023 12

A single, vertically scaled DB server with logical isolations (Synonyms etc.) supports multiple

modules. Periodic snapshots are obtained and backed up offsite in line with recovery point

objectives (RPO). The entire application runs on a single DC with offsite backups. Now let’s

imagine what can go wrong in this deployment. A few possibilities include:

Application Node failures

1. This will result in a loss of user sessions leading to poor customer experience.

2. Increased load on the remaining nodes, which may not be able to provide the required

service. Should you need to support this, additional capacity must be installed. How much

and how soon?

3. The application may still withstand the failure and serve requests.

DB Node Failure

1. Complete loss of service Single point of failure.

2. There is a loss of data since the last snapshot if the node is not recoverable.

3. If recovery procedures are not regularly tested, it is likely to take longer to reinstate the DB

with offsite backups. The data size, bandwidth limitations, and reliability between offsite and

on-prem may lead to recovery time objectives (RTO) violations.

Network Failure

1. Partial or complete loss of service, depending on the area of impact

2. Potential Single Point of Failure

DC failure

1. Complete loss of service. Single point of failure

Other Failures may include:

1. Disk Failures

2. Long Waits

3. Cascading Failures

4. Retry Overload Failures

5. Unexpected Traffic Spike related failures

6. Deployment-induced failures

7. Env-centric configuration errors (Both infra and app-specific level)

The list may go on. However, not all failures lead to a complete loss of service. Some are

localized, and some have widespread impact. This is what blast radius means. The larger the

failure spread (DB/Network/DC failures) larger the blast radius is. One way to improve the

resiliency of applications is to contain the failure domains and blast radius, leading to better fault

isolation.

Modern Architectures (Microservices etc.) and cloud-native deployments are very handy for

isolating faults and may benefit from smaller fault domains and blast radii. The diagram below

depicts an abstract view of a microservice deployment with a sidecar infrastructure.

The Need for Chaos Engineering in Modern Architectures

©LTIMindtree | Privileged and Confidential 2023 13

A single, vertically scaled DB server with logical isolations (Synonyms etc.) supports multiple

modules. Periodic snapshots are obtained and backed up offsite in line with recovery point

objectives (RPO). The entire application runs on a single DC with offsite backups. Now let’s

imagine what can go wrong in this deployment. A few possibilities include:

Application Node failures

1. This will result in a loss of user sessions leading to poor customer experience.

2. Increased load on the remaining nodes, which may not be able to provide the required

service. Should you need to support this, additional capacity must be installed. How much

and how soon?

3. The application may still withstand the failure and serve requests.

DB Node Failure

1. Complete loss of service Single point of failure.

2. There is a loss of data since the last snapshot if the node is not recoverable.

3. If recovery procedures are not regularly tested, it is likely to take longer to reinstate the DB

with offsite backups. The data size, bandwidth limitations, and reliability between offsite and

on-prem may lead to recovery time objectives (RTO) violations.

Network Failure

1. Partial or complete loss of service, depending on the area of impact

2. Potential Single Point of Failure

DC failure

1. Complete loss of service. Single point of failure

Other Failures may include:

1. Disk Failures

2. Long Waits

3. Cascading Failures

4. Retry Overload Failures

5. Unexpected Traffic Spike related failures

6. Deployment-induced failures

7. Env-centric configuration errors (Both infra and app-specific level)

The list may go on. However, not all failures lead to a complete loss of service. Some are

localized, and some have widespread impact. This is what blast radius means. The larger the

failure spread (DB/Network/DC failures) larger the blast radius is. One way to improve the

resiliency of applications is to contain the failure domains and blast radius, leading to better fault

isolation.

Modern Architectures (Microservices etc.) and cloud-native deployments are very handy for

isolating faults and may benefit from smaller fault domains and blast radii. The diagram below

depicts an abstract view of a microservice deployment with a sidecar infrastructure.

Figure 8: Microservice deployment with a sidecar infrastructure

We needed to build systems that embrace failure as a natural
occurrence even if we did not know what the failure might be.”

 -Werner Vogels

The Need for Chaos Engineering in Modern Architectures

©LTIMindtree | Privileged and Confidential 2023 14

FAILURE POSSIBLE PATTERNS/OPTIONS

Application, DB, and Messaging Platform

Failures

Loose coupling, redundancy & replication,

db per service, Scaled out DBs/NoSQL,

message persistence, multi-az & microservices

Request Delays, Errors, Service

Unavailability & Positive Feedback overload

Circuit breakers, exponential backoff, code

level handling

Traffic Overload & Cascading Failures
Handshaking, Autonomous Scaling, Failure

Isolation, Bulkhead & Circuit Breaker

Infra side Component Failures(

Storages, Nodes, Zonal and

Regional)

Redundancy, Identical/Swappale Designs,

Multi Zonal/Regional Replication and Backups

MultiAZ & Global and right managed Services

Static Stability

Stateless, Containerization

InfraAsCode

Release/Deployment based failures(Rollback

Minimization, Deployment Downtimes

Reduction)

Blue-Green Deployments, Canary Releases,

A/B Testing, Infra as Code & Rollback

Automation

Scalability constraints

Self-Healing Infrastructure,

Serverless/Containerization patterns

Stateless services/No node or session affinity

Event Driven

Table 2: Failures and potential patterns for distributed/microservice deployments

Let us look at the nature of failures and potential patterns we can apply for such

distributed/microservice deployments.

To summarize, distributed architectures with cloud-native deployments provide a greater

opportunity to improve systems reliability. However, bringing adequate controls and testing them

for resilience still takes a lot of effort.

The Need for Chaos Engineering in Modern Architectures

©LTIMindtree | Privileged and Confidential 2023

The Need for Chaos Engineering in Modern Architectures

15

Conclusion07
Modern architectures have brought numerous benefits to systems through overall quality and

reliability improvements. As a side effect, they have introduced ever-expanding dependencies.

Traditional testing methods are deterministic, and it is hard to factor every testing scenario and

execute the same during every deployment. Hence, an empirical approach is needed to complement

the current resiliency testing methods where we can induce controlled disruptions and validate

systems' behavior.

This is where Chaos Engineering comes into play. Part two of this Whitepaper- Adopting Chaos

Engineering, will cover the the CE principles and tools, and how an organization can adopt Chaos

Engineering.

We take an analytical approach by delving into Chaos Engineering deeper.

“An evolving system increases its complexity unless work is done to
reduce it”

– Meir Lehman

Authors08

16©LTIMindtree | Privileged and Confidential 2023

The Need for Chaos Engineering in Modern Architectures

Ragupathi Palani (Ragu)
Associate Vice President - Head of Architecture Europe/UK

Ragu heads the Architecture Practice for Europe and UK, providing

architecture & advisory services to CIOs, CTOs & Heads of Architecture of

LTIMindtree Customers. A technology leader with over 22 years of

experience envisioning, architecting, and implementing medium to

complex enterprise applications. Besides, he has diverse experience

ranging from Portfolio Rationalization, Platform Assessment, Reference

Architecture, Performance Engineering, and AI/ML to anchoring large

pre-sales engagements from Architecture. Outside work, he enjoys playing

badminton and spending time with family and friends.

Joydeep is a keen technology enthusiast and evangelist with over 15 years

of experience defining end-to-end architectures for clients in various

domains. He has been part of pre-sales solutions and leading digital

transformations across different customer portfolios. He has been an

advocate of MACH architectures and has successfully transformed multiple

projects from on-prem monolith-based systems to cloud-based,

open-source, microservice, and API-first designs. Apart from work, he is a

music buff, likes playing guitar, and loves to travel.

Joydeep Gupta
Principal Architecture

References09

17©LTIMindtree | Privileged and Confidential 2023

• Chaos Engineering 101, Sharpended.io, Mathias Lafeldt, February 10, 2016:
https://sharpend.io/chaos-engineering-101/

• Principes of Chaos Engineering, Principles of Chaos, March 2019: http://principlesofcha-
os.org/

• Chaos Engineering For Cloud Native - A Definitive Guide, Xenostack, August 19 2022:
https://www.xenonstack.com/blog/chaos-engineering-for-cloud-native

• The Dual Approach in Scaling: Chaos Engineering and Performance Engineering, Kyle
McMeekin, Gremlin, MARCH 15, 2022: https://www.gremlin.com/blog/the-dual-ap-
proach-in-scaling-chaos-engineering-and-performance-engineering/

• Chaos Engineering: the history, principles, and practice, Tamy Butow, Gremlin, May 5,
2021: https://www.gremlin.com/community/tutorials/chaos-engineer-
ing-the-history-principles-and-practice/#user-content-a-brief-history-of-chaos-engineering

• 2022 Gartner Hype Cycle for Agile & DevOps Report Identifies Four Solutions Chef
Continues to Lead, Michelle Sebek, Progress Chef, December 15, 2022: https://ww-
w.chef.io/blog/2022-gartner-hype-cycle-for-agile-de-
vops-report-identifies-four-solutions-chef-continues-to-lead

• Continuous Chaos — Introducing Chaos Engineering into DevOps Practices, Capital One,
August 10, 2018: https://www.capitalone.com/tech/software-engineering/continu-
ous-chaos-introducing-chaos-engineering-into-devops-practices/

• Shared Responsibility Model for Resiliency, AWS, https://docs.aws.amazon.com/whitepa-
pers/latest/disaster-recovery-workloads-on-aws/shared-responsibility-model-for-resiliency.html

• https://medium.com/@nabtechblog/observabili-
ty-in-the-realm-of-chaos-engineering-99089226ca51

• Digital Transformation Statistics and Digital Skills [2022-2023], Digital Adoption, Febru-
ary 10, 2023: https://www.digital-adoption.com/digital-transformation-statistics/

• Are you an Elite DevOps performer? Find out with the Four Keys Project, Google
Cloud, September 23, 2020: https://cloud.google.com/blog/products/devops-sre/us-
ing-the-four-keys-to-measure-your-devops-performance

• The 10 Biggest Cloud Outages Of 2022 (So Far), Wade Tyler Millward, Crn, July 01, 2022:
https://www.crn.com/news/cloud/the-10-biggest-cloud-outages-of-2022-so-far-/5

The Need for Chaos Engineering in Modern Architectures

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises

across industries to reimagine business models, accelerate innovation, and maximize growth by

harnessing digital technologies. As a digital transformation partner to more than 700 clients,

LTIMindtree brings extensive domain and technology expertise to help drive superior competitive

differentiation, customer experiences, and business outcomes in a converging world. Powered by

82,000+ talented and entrepreneurial professionals across more than 30 countries, LTIMindtree — a

Larsen & Toubro Group company — combines the industry-acclaimed strengths of erstwhile Larsen and

Toubro Infotech and Mindtree in solving the most complex business challenges and delivering

transformation at scale. For more information, please visit https://www.ltimindtree.com/

HTTPS://WWW.LTIMINDTREE.COM/

