
Whitepaper

Adopting Chaos Engineering
P a r t I I

Table of Contents

1 Excecutive Summary ... 3

2 Introduction 4

3 Intoduction to Chaos Engineering... 7

4 How Does Chaos Engineering Work?.. 9

5 Introducing Chaos Engineering Into Organizations.. 13

6 Embracing Chaos Engineering Into an Application ..15

©LTIMindtree | Privileged and Confidential 2023

7 Running an Experiment for an Application...17

8

9

Examples of a Chaos Test... 20

Chaos Engineering Tools- A Comparison... 21

 ...

Benefits of Chaos Engineering.. 22

Authors ... 24

References ...25

Conclusion... 23

10

11

12

13

Adopting Chaos Engineering

Executive Summary01

3

In the realm of modern architectures, the pursuit of reliability reaches new heights, and Chaos

Engineering emerges as a crucial ally. This whitepaper provides an insightful glimpse into the world

of well-architected frameworks while introducing the transformative concept of Chaos

Engineering (CE).

Chaos Engineering is a proactive approach that empowers teams to uncover vulnerabilities by

deliberately introducing controlled chaos into their systems. It functions through meticulous

experimentation, where failures, latency, or disturbances are injected to observe their impact on

the architecture, paving the way for system fortification.

To successfully embrace CE, organizations must foster a culture that embraces failure as an

opportunity for growth. The whitepaper provides strategic guidance for integrating CE,

emphasizing the importance of collaboration, trust, and aligning chaos experiments with business

goals.

Furthermore, it offers a practical roadmap for implementing CE within an application, covering

critical aspects such as steady-state criteria, hypothesis formulation, and effective experiment

execution.

©LTIMindtree | Privileged and Confidential 2023

Adopting Chaos Engineering

Introduction02

©LTIMindtree | Privileged and Confidential 2023

Adopting Chaos Engineering

4

Building robust and resilient systems has become increasingly challenging in today's rapidly

evolving technological landscape. Traditional approaches to ensure system reliability often fall

short in the face of complex distributed architectures and hyperscale demands. As organizations

strive to deliver uninterrupted services and exceptional user experiences, an approach is necessary

to embrace the chaos rather than avoid it.

In part 1 of this whitepaper titled “The Need for Chaos Engineering in Modern

Architectures,” we explored the inherent difficulties in building resilient systems and the

limitations of traditional approaches. We identified the pressing need for a paradigm shift that

embraces chaos as an opportunity for growth rather than a hindrance to stability.

In this whitepaper, we delve deeper into the transformative power of chaos engineering, offering

a comprehensive understanding of this innovative discipline. With a sneak peek into the world of

reliability through well-architected frameworks for hyperscalers, we unlock the potential of chaos

engineering to revolutionize how we design, test, and operate modern systems. With chaos

engineering as our guiding principle, we embark on a journey to unveil the secrets of resilience and

enable organizations to thrive in an increasingly complex and dynamic technological landscape.

A sneak peek into reliability through well-architected frameworks of
hyperscalers
Reliability is one of the pillars of a well-architected framework of all cloud providers. It provides

checklists, architectural patterns, and best practices to build reliable systems. While building

reliable systems, one needs to focus on the Non-Functional Requirements (NFRs) of the application.

These requirements will determine the architectural and deployment choices one must consider in

the cloud.

https://www.ltimindtree.com/services/quality-engineering/#tab-resource-id-4�
https://www.ltimindtree.com/services/quality-engineering/#tab-resource-id-4�

©LTIMindtree | Privileged and Confidential 2023 5

Adopting Chaos Engineering

Some of the key items to consider before making the architectural choices are:

• Business criticality of the application

• Service Tier (Tier 1/2/3--> Organizations may have their definitions) to determine the

▪ Uptime and availability of the application

▪ Mean Time to Recover (MTTR), Mean Time Between Failures (MTBF)

▪ Availability SLAs and so on

• User distribution (Local/Regional/Global)

Combining these requirements with the cloud providers’ service SLAs, we can arrive at the right

architectural/deployment pattern for the application. Refer to cloud providers’ best practices

while making such design decisions.

The shared responsibility model provides visibility regarding where application teams focus, while

cloud providers offer reliability in the foundational areas. For example, AWS is responsible for

providing a reliable network, storage, computing, and other services in line with the published

SLAs.

Figure 1: Shared Responsibility Model, AWS :
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/shared-responsibility-model-for-resilien

cy.html

2

©LTIMindtree | Privileged and Confidential 2023

Given the nature of the cloud business, there are several services cloud providers offer in every

area. These choices will directly impact the application reliability; hence, as a customer, cloud

providers make us responsible for areas as below:

• Networking, Quotas, and Constraints

◦ Ensuring we choose the right network topologies, services with the right level of quotas,

etc.

• Change Management and Operational Resilience

◦ Having the right level of monitoring, metrics, and alerting in place for all the compo-

nents of the system.

◦ A better understanding of the continuous capacity needs, reliable scaling up/down

practices.

• Observability and Failure Management

◦ Ensuring the DR practices and other recovery processes meet business SLAs.

◦ Visibility of systems health with the right automation in place to heal.

• Workload architecture

◦ Right architectural choices to have a smaller blast radius, and improved fault isolation.

◦ Applicable implementation patterns like the ones referred in the previous post.

(Visualizing failures in modern architectures)

• Continuous Testing of Critical Infrastructure

◦ Improved rigor on traditional testing methods with

◦ New practices for testing resiliency (Chaos Engineering).

Each of the above items demands a separate article on its own. In our future blogs, we will try to

bring details for some of them. However, this whitepaper will cover the last responsibility

item with particular emphasis on chaos engineering.

“Good intentions don’t work, mechanisms do.”
- Jeff Bezos

6

Adopting Chaos Engineering

6

Introduction to
Chaos Engineering

03
Chaos engineering is a field that involves experimenting on a system to instill confidence in its

ability to withstand turbulent conditions in production. The idea here is to identify weak points in

the system before they lead to outage conditions.

By regularly doing these experiments in the target system, we continue to identify and resolve

resiliency bottlenecks, thus improving the overall system reliability. It is not about randomly

breaking things in production or shutting down nodes. Instead, it involves systematically injecting

failures with the right plans should something go wrong. But who in the world wants to disrupt a

running system? Until recently, teams hardly had the confidence to do such experiments. Over the

years, organizations have started introducing chaos engineering into their Software Development

Life Cycle.

Chaos engineering has already crossed the chasm of the technology adoption lifecycle. According

to Gartner, nearly 40% of organizations will be using chaos engineering in some shape or other

by this year (2023). The report says this will result in a 20% reduction in unplanned downtimes.

Such reduction means a lot for critical applications

Figure 2: Chaos Engineering on the Technology Adoption Lifecycle,
https://www.harness.io/downloads/the-chaos-engineering-maturity-model

7
©LTIMindtree | Privileged and Confidential 2023

Adopting Chaos Engineering

©LTIMindtree | Privileged and Confidential 2023 8

It is essential to understand that chaos engineering (CE) does not replace the traditional validation

methods to confirm system performance, endurance, and other critical qualities. We still need to

have the same rigor in terms of evaluating applications. Unlike other testing methods, CE

complements through resiliency tests, preferably in a production environment. There is often a

myth that CE is always executed in a production environment, and teams often get nervous about

moving the needle forward due to such a mindset.

Although the pattern is highly convincing and suitable for real-world experiments, the decision

usually hinges on factors like risk tolerance, the criticality of the application, etc. Imagine financially

sensitive applications or applications where outages may endanger lives. It gets more challenging

to conduct production experiments for these applications. In such situations, lower environments

become an obvious option though this may not entirely remove the resiliency uncertainties.

Adopting Chaos Engineering

©LTIMindtree | Privileged and Confidential 2023 9

How Does
Chaos Engineering Work?

04
CE emphasizes the importance of systematically planning and executing the resiliency tests in a

controlled manner. Fix if the experiments result in failures, and repeat the process to improve the

system's resiliency progressively. The below diagram depicts a standard CE process followed today.

Let's go into the detail of each step.

Define
Steady State

Form
Hypothesis

Plan
Experiments

Run
Experiments Fix Issues

Iterate and Improve

Figure 3: Test Execution Cycle

Define Steady State
A steady state defines our belief in the status of the application before, during, and after the

execution of a chaos experiment. If the application does not return to the expected state, it is

considered violated. A good definition of steady-state behavior is to relate the expected

experiences of end users with the disruptions introduced.

Hence consider metrics like SLOs, performance SLAs, and service availability for defining steady

state. Leverage the NFRs captured during the solution design phase. Some key parameters you

may leverage include technical metrics like latency, error rate, traffic volume, and resource

exhaustion. Business metrics include the number of logins during peak hours and the number of

failed logins. Relate these impacts to the user's expected experience.

Form Hypothesis
A hypothesis is the expectation we have from running the experiments. A few examples include:

• The application health check endpoint will not be impacted throughout the experiment.

• If 30% of the nodes in the EKS node group are terminated, the application still responds under

500ms for the 99th percentile of traffic.

• The application will function normally during database failover but should throw a friendly

message for certain transactions failing.

• When the nodes are down, alerts will be triggered in 2 mins.

Plan Experiments
Identify experiments with minimal impact and blast radius. A recommended way to define

experiments is to follow the “Known/Unknowns” matrix.

Adopting Chaos Engineering

©LTIMindtree | Privileged and Confidential 2023 10

Define Steady State
A steady state defines our belief in the status of the application before, during, and after the

execution of a chaos experiment. If the application does not return to the expected state, it is

considered violated. A good definition of steady-state behavior is to relate the expected

experiences of end users with the disruptions introduced.

Hence consider metrics like SLOs, performance SLAs, and service availability for defining steady

state. Leverage the NFRs captured during the solution design phase. Some key parameters you

may leverage include technical metrics like latency, error rate, traffic volume, and resource

exhaustion. Business metrics include the number of logins during peak hours and the number of

failed logins. Relate these impacts to the user's expected experience.

Form Hypothesis
A hypothesis is the expectation we have from running the experiments. A few examples include:

• The application health check endpoint will not be impacted throughout the experiment.

• If 30% of the nodes in the EKS node group are terminated, the application still responds under

500ms for the 99th percentile of traffic.

• The application will function normally during database failover but should throw a friendly

message for certain transactions failing.

• When the nodes are down, alerts will be triggered in 2 mins.

Plan Experiments
Identify experiments with minimal impact and blast radius. A recommended way to define

experiments is to follow the “Known/Unknowns” matrix.

K
n

o
w

n
s

U
n

kn
o

w
n

s

Knowns Unknowns

A
W

A
R

EN
ES

S

UNDERSTANDING

Things we are aware
of and understand

Things we are neither
of nor understand

Things we understand
but are not aware of

Things we are aware
of and don’t
understand

Knowns Knowns

Unknowns Knowns

Knowns Unknowns

Unknowns Unknowns

Figure 4: Known-Unknown Matrix

Adopting Chaos Engineering

©LTIMindtree | Privileged and Confidential 2023 11

Adopting Chaos Engineering

Let’s relate this to a microservices solution running on a Kubernetes cluster. Sequence your

experiments in the order mentioned below.

Known-Knowns: When one of the pods for any service terminates, another similar pod will be

started as part of the replica set.

Known-Unknowns: When a pod terminates, we don’t know how long the load balancer takes to

direct all the requests to the healthy pod and the behavior of the requests forwarded to the

unhealthy pod.

Unknown-Knowns: If we terminate two pods(replica) simultaneously, we don’t know the

meantime for two new pods to start.

Unknown-Unknowns: We don’t know what will happen if 70% of the nodes in a node group fail

in our primary region.

Run Experiments
Experiments are run by dividing the workload into control and experimental groups. Control

groups are isolated from chaos failures and are immune to the impact. The experimental group is

where the disruption happens. While running experiments, don’t jump directly into production, as

we may not be fully aware of the behavior of the experiment. Hence in a non-prod environment,

• Execute functional tests to validate business metrics.

• Execute load, endurance, and stress tests to expose vulnerabilities during an experiment and

fix issues.

• Run experiments.

• Record the outcome, mitigate, and re-run.

The next page has a sample experiment approach from AWS.

12©LTIMindtree | Privileged and Confidential 2023 12

Adopting Chaos Engineering

Figure 5: Building confidence through chaos engineering on AWS, AWS, November 29, 2022:
https://d1.awsstatic.com/events/Summits/reinvent2022/ARC307_Building-confidence-through-chaos-engineering-on-AWS.pdf

Fix/Learn & Iterate
During the execution of these experiments, stop the experiment if the steady state is disrupted.

Focus on understanding what failed the steady-state hypothesis. Bring the necessary changes to

the platform before further running any experiments.

©LTIMindtree | Privileged and Confidential 2023 13

Adopting Chaos Engineering

Introducing Chaos
Engineering Into Organizations05

With uncontrolled executions and a lack of oversight, CE will result in true chaos in the

organizations. As a result, it may fizzle out soon. Hence one needs to induct CE progressively and

methodically. One of the ways to establish CE in an organization is via a Centre of Excellence

focused on chaos engineering. We will explain in detail how this may work and how platform

teams can engage and start their CE journey for their applications. The CoE could be an extension

of the SRE team but should be multi-disciplinary with representations from Architecture, QA,

Platform/DevOps, and SRE.

Figure 6: Chaos Engineering Establishment

©LTIMindtree | Privileged and Confidential 2023 14

The first team kickstarting the CE program may form and lead the CoE until multiple applications

are willing to start their CE journey. However, keeping distinct roles from the beginning is better

to ensure smoother adoption. The job of the CoE includes but is not limited to the below ones.

• Be an enabler for adopting CE in a systematic way into application teams. Empower and

guide the application team to kickstart their CE Journey. (Hub & Spoke Model)

• Conduct market research and arrive at appropriate CE tools per organizational needs.

• Help application teams through readiness assessments and, upon successful onboarding,

guide them with initial experiments until First Game Day. Provide clarity on key roles

required for the CE journey for the application.

• Provide standardized experiment templates to define and capture outcomes of test execu-

tions.

• Help teams to understand what a CE test case truly is.

• Provide simple real-world experiments to get conversant with the approach.

• Provide best practices and common reusable patterns based on past executions within and

outside the enterprise.

• Obtain learnings from different application executions and evaluate for the fitment to make

it a reusable pattern. This can be fed to Architecture and operations teams for appropriate

use in their respective areas.

Adopting Chaos Engineering

©LTIMindtree | Privileged and Confidential 2023 15

Embracing Chaos Engineering
Into an Application06

Like any other testing procedure, CE does consume labor and money and is not a substitute for

existing testing practices. Some of the criteria to qualify applications for the CE journey may include:

Business/Mission Criticality of the application
Will the outages lead to major revenue/brand impact? Look for applications that are classified for

higher service tiers. Applications with lower availability SLAs, relatively simple to moderate in

complexity, may be deprioritized for later; if not, we can eliminate them.

State of the application
Is the application in the early stages of development and hasn’t completed the MVP? Are the

environments stable enough? Integrating early into product/application development may cause

prioritization and execution challenges. Hence wait for the application for its first stable state as a

general practice.

Observability of the application
Running disruptive tests is just one part of the CE, but the objective is understanding what happens

with the induced disruption. Are we able to detect signals, and do they mean any? Having the right

level of metrics, tracing, logging, and alerting, along with observability of the application, is a must.

This is also one of the reasons why the stage of the application matters, as teams often deprioritize

observability over feature development in the early stages. The application team should be able to

make better decisions given the knowledge of their application for better instrumentation and

guardrails needed.

Deployment Homogeneity
Start with applications deployed in a single cloud provider while starting the CE journey. As CE

matures in the organization with adequate tooling to handle Hybrid/Multi-Cloud topologies, we can

onboard such applications. There may be a steeper learning curve to consider otherwise.

Service Dependency Map
With so many moving parts in modern architecture, having a good view of the component and

service dependencies is necessary. Running an experiment without knowing these dependencies will

lead to confusion and chaos. Ensure teams adequately understand the dependencies and have an

up-to-date service dependency map.

DevOps Maturity
To get the true benefit of CE, avoid executing chaos experiments manually in any environment, as it

lacks speed, consistency, frequency of execution, and volume of executions. If there are existing

pipelines, we can gradually embed the chaos test through shift-left behavior. Teams that integrate

IaC into their delivery make it flexible to execute chaos tests using different execution patterns.

Revisit the well-architected framework’s reliability pillar, ensuring the best practices are in place and

have been embraced along with the application change.

Adopting Chaos Engineering

©LTIMindtree | Privileged and Confidential 2023 16

Like any other testing procedure, CE does consume labor and money and is not a substitute for

existing testing practices. Some of the criteria to qualify applications for the CE journey may include:

Business/Mission Criticality of the application
Will the outages lead to major revenue/brand impact? Look for applications that are classified for

higher service tiers. Applications with lower availability SLAs, relatively simple to moderate in

complexity, may be deprioritized for later; if not, we can eliminate them.

State of the application
Is the application in the early stages of development and hasn’t completed the MVP? Are the

environments stable enough? Integrating early into product/application development may cause

prioritization and execution challenges. Hence wait for the application for its first stable state as a

general practice.

Observability of the application
Running disruptive tests is just one part of the CE, but the objective is understanding what happens

with the induced disruption. Are we able to detect signals, and do they mean any? Having the right

level of metrics, tracing, logging, and alerting, along with observability of the application, is a must.

This is also one of the reasons why the stage of the application matters, as teams often deprioritize

observability over feature development in the early stages. The application team should be able to

make better decisions given the knowledge of their application for better instrumentation and

guardrails needed.

Deployment Homogeneity
Start with applications deployed in a single cloud provider while starting the CE journey. As CE

matures in the organization with adequate tooling to handle Hybrid/Multi-Cloud topologies, we can

onboard such applications. There may be a steeper learning curve to consider otherwise.

Service Dependency Map
With so many moving parts in modern architecture, having a good view of the component and

service dependencies is necessary. Running an experiment without knowing these dependencies will

lead to confusion and chaos. Ensure teams adequately understand the dependencies and have an

up-to-date service dependency map.

DevOps Maturity
To get the true benefit of CE, avoid executing chaos experiments manually in any environment, as it

lacks speed, consistency, frequency of execution, and volume of executions. If there are existing

pipelines, we can gradually embed the chaos test through shift-left behavior. Teams that integrate

IaC into their delivery make it flexible to execute chaos tests using different execution patterns.

Revisit the well-architected framework’s reliability pillar, ensuring the best practices are in place and

have been embraced along with the application change.

Adopting Chaos Engineering

©LTIMindtree | Privileged and Confidential 2023 17

Adopting Chaos Engineering

Running an Experiment for
an Application07

Based on the above validations, if there is a need to bring the required changes, teams can

prioritize and implement the necessary changes to make it CE-ready. Once this is done, we can

kickstart the onboarding procedure with the help of CoE.

Focus on making the team comfortable with CE processes, scenarios and able to visualize what is

to be truly tested. Start with 1 or 2 simple real-world experiments with a smaller blast radius. Make

sure you have enough guardrails to manage should things go wrong. Use standard experiment

templates and preferably have this within the CoE repository for wider reuse.

A sample experiment template may look like the one below.

Figure 7: Building confidence through chaos engineering on AWS, Laurent Domb, AWS Static, December 2, 2022:
https://d1.awsstatic.com/events/Summits/reinvent2022/ARC307_Building-confidence-through-chaos-engineering-on-AWS.pdf

©LTIMindtree | Privileged and Confidential 2023 18

Start conducting the experiments in the lower environments a couple of times, and once you are

comfortable, move them upstream. At this stage, the team is comfortable and conversant with the

execution, and it is time for experimentation in the production environment.

Seek guidance from the CoE and validate the preparation procedures for the Game Day. Ensure

required parties are all in place, including Incident management, operations, application, and

release teams. Ensure the runbooks are up to date and the IAM policies align with the lower envi-

ronments. Perform the execution and record your learnings. There are a few different ways a test

can be executed in production. The sample execution flow is highlighted below.

1. Direct execution on product deployment
It a straightforward from an execution standpoint but the riskiest. On the other hand, it does not

demand any additional infrastructure.

2. Leverage canary deployments or other identical methods
These deployments create an immutable infrastructure where we may apply controlled routing

policies, ensuring we have better control should there be an impact. This identical infrastructure,

however, introduces additional costs and demands automated infra spin-off to be in place.

A sample pattern in AWS is highlighted below. We can do similar ones for other cloud providers as

well.

Figure 8: Chaos Engineering — How to safely inject failure in your application?, Adrian Hornsby, Medium,
May 8, 2020: https://medium.com/the-cloud-architect/chaos-engineering-q-a-how-to-safely-inject-failure-ced26e11b3db

Adopting Chaos Engineering

©LTIMindtree | Privileged and Confidential 2023 19

The result could confirm the steady-state hypothesis, which is good. It is also welcome if there is a

failure and the need to abort the experiment because we have found a resiliency gap in the

application.

Fixing the gaps should be prioritized, ensuring it is not falling into the backlog abyss. Ensure product

owners know the risks, push the fixes early, and repeat the experiments, ensuring the steady state

hypothesis works this time. If the experiments are done manually, ensure you integrate them into

mainstream DevOps pipelines through automation. Manual experiments will increase the TOIL.

Every successive execution should result in the improvement of system resiliency. Should you think

that even with these executions, if there is no reduction of incidents with time and there is

no improvement in MTTD and MTTR metrics, revisit the Chaos tests. Understand whether we

are addressing the problem in the right area. Consult with other teams and engage the CoE. At the

end of the day, this should not add to the overhead; instead, it should help build the resiliency

of the applications.

Adopting Chaos Engineering

©LTIMindtree | Privileged and Confidential 2023 20

Some Examples of a
Chaos Test08

Adopting Chaos Engineering

• Simulate Node/Component Failures: To validate whether the application can withstand the

loss of single or multiple nodes.

• Resources Exhaustion: Application behavior for peaking CPU or memory usage.

• Latency simulation: What happens if we gradually increase latency for critical flows? How

sensitive is the application for the latency drops? Is it able to continue to function?

• Drain container instances on the cluster.

• Abrupt termination of instances

• Termination of nodes in a K8s cluster. Can the application shift loads to other available nodes,

and create additional nodes without disrupting the application?

• Terminate a group of nodes that pertain to the node group.

• Loss of cache service like Redis. What happens to the application performance? Does the DB

get overloaded? Is it able to sustain?

• Key HTTP error simulations (500/404 and others) partial and full

• Delay injection for third-party integrations. Is this creating a cascading impact? Are our retries

work fine? Are we able to circuit break as expected?

• DB state change simulation: What happens if a DB is in shutting down/failing over

/rebooting state? Does the application demonstrate expected behavior?

• Loss of single zone: Are our services able to withstand the loss of a zone as expected? Is the

cluster still able to function normally?

• Loss of a Region: For a multi-region design, is the application fully functional even with a loss

of complete region? Is it able to recover and operate within the SLOs?

• Network failures: In hybrid or Multi cloud networks, does the application behave as expected

if the connectivity fails?

• Network Packet loss simulations.

There are many ways to simulate these experiments, from using cloud consoles to CLIs of cloud

providers. The APIs are handy, and often the tools available in the markets use them and provide

a better level of abstraction.

©LTIMindtree | Privileged and Confidential 2023 21

Adopting Chaos Engineering

Chaos Engineering
Tools - A Comparison09

Unlike the days of Chaos Monkey, we have many tools in the market. Indeed, cloud providers

themselves have started introducing the tools for CE. Avoid going into the route of custom scripts,

as it may not scale for the long run. These tools vary in applicability (Vendor-Lock ins), ability to

script custom experiments, etc. The choice would depend on the needs of the organization.

 Litmus Chaos Mesh AWS FIS
Azure Chaos

Studio
Gremlin

License Open Source Open Source Commercial Commercial Commercial

Works with Kubernetes Kubernetes Cloud
(AWS-only)

Cloud
(Azure-only)

Kubernetes,
containers, Linux,

and Windows
hosts

Application Faults No No Yes Yes Yes

Host Faults Yes Yes Yes Yes Yes

Container / Pod faults Yes Yes No Yes Yes

GUI Yes Yes Yes Yes Yes

CLI Yes Yes Yes No Yes

Rest API No No No Yes Yes

Reliability scoring Yes No No No Yes

Metrics reporting Yes Yes Yes Yes Yes

Custom faults No No Yes Yes No

Health Checks Yes No No No Yes

CE Tools

C
ap

ab
ili

ti
es

Table1: Chaos engineering tools and their capabilities

Tools that are not covered but still worthy to look at include Harness, Steadybit, ChaosBlade, and

Chaos Toolkit.

©LTIMindtree | Privileged and Confidential 2023 22

Benefits of Chaos
Engineering10

Adopting Chaos Engineering

As mentioned in Part I of this document, the average cost of downtime can vary from few

thousand to millions of dollars an hour. Frequent downtimes will heavily impact direct and indirect

costs. While we cannot eradicate the downtimes, the adoption of Chaos Engineering can lead to:

• Reduction in frequency of outages: More reliable runbooks and well-prepared teams as

they are exposed to different controlled disruptions regularly. This will lead to improved

MTTD and MTTR. Teams can become more productive, shifting their energy to improve other

critical areas.

• Improved service uptimes leading to improved customer trust: Many eCommerce

companies make most of their sales during the peak periods (Thanksgiving/Cyber

Monday/Boxing Day/Others). A resilient system during these periods will significantly improve

overall revenues and the NPS. Companies have turned this into their competitive advantage

and provide a differentiator to their customers.

• Reduction in Legal and Regulatory impacts in sectors like Healthcare & Financial Services.

• Improvement in Deployment Frequency: With higher levels of operational confidence,

teams start embracing more deployments, creating the opportunity to ship new features faster,

thus aiding businesses well.

©LTIMindtree | Privileged and Confidential 2023 23

Adopting Chaos Engineering

Conclusion11
We have highlighted the challenges to building resilient systems and how CE can help improve the

same. Further, we have provided a framework to introduce CE into organizations systematically.

The exploration of Chaos Engineering divided in two parts, within the context of modern

architecture has revealed its immense potential to revolutionize system reliability. By recognizing

the limitations of traditional approaches and embracing controlled chaos, organizations can

proactively identify weaknesses, enhance fault tolerance, and build more resilient systems.

We encourage organizations to embrace Chaos Engineering as a transformative discipline,

leveraging its power to unlock the full potential of their systems and achieve unparalleled levels of

resilience in the face of uncertainty and complexity.

Authors12

24©LTIMindtree | Privileged and Confidential 2023

Ragupathi Palani (Ragu)
Associate Vice President - Head of Architecture Europe/UK

Ragu heads the Architecture Practice for Europe and UK, providing

architecture & advisory services to CIOs, CTOs & Heads of Architecture of

LTIMindtree Customers. A technology leader with over 22 years of

experience envisioning, architecting, and implementing medium to

complex enterprise applications. Besides, he has diverse experience

ranging from Portfolio Rationalization, Platform Assessment, Reference

Architecture, Performance Engineering, and AI/ML to anchoring large

pre-sales engagements from Architecture. Outside work, he enjoys playing

badminton and spending time with family and friends.

Joydeep is a keen technology enthusiast and evangelist with over 15 years

of experience defining end-to-end architectures for clients in various

domains. He has been part of pre-sales solutions and leading digital

transformations across different customer portfolios. He has been an

advocate of MACH architectures and has successfully transformed multiple

projects from on-prem monolith-based systems to cloud-based,

open-source, microservice, and API-first designs. Apart from work, he is a

music buff, likes playing guitar, and loves to travel.

Joydeep Gupta
Principal Architecture

Adopting Chaos Engineering

References13

25©LTIMindtree | Privileged and Confidential 2023

Adopting Chaos Engineering

• Chaos Engineering 101, Mathias Lafeldt, Sharpended.io, February 10, 2016: https://sharpend.io/chaos-engineering-101/

• PRINCIPLES OF CHAOS ENGINEERING, Principlesofchaos, 2019 March: http://principlesofchaos.org/

• Chaos Engineering For Cloud Native - A Definitive Guide, Navdeep Singh Gill, Xenonstack, 19 August 2022:
https://www.xenonstack.com/blog/chaos-engineering-for-cloud-native

• The Dual Approach in Scaling: Chaos Engineering and Performance Engineering, Kyle McMeekin. Gremlin, MARCH 15,
2022: https://www.gremlin.com/blog/the-dual-approach-in-scaling-chaos-engineering-and-performance-engineering/

• Chaos Engineering: the history, principles, and practice, Tammy Butow, Gremline, May 5, 2021:
https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice/

• 2022 Gartner Hype Cycle for Agile & DevOps Report Identifies Four Solutions Chef Continues to Lead, Michelle Sebek,
Progress Chef, December 15, 2022:
https://www.chef.io/blog/2022-gartner-hype-cycle-for-agile-devops-report-identifies-four-solutions-chef-continues-to-lead

• Continuous Chaos — Introducing Chaos Engineering into DevOps Practices, Sathiya Shunmugasundaram, CapitalOne, August
10, 2018:
https://www.capitalone.com/tech/software-engineering/continuous-chaos-introducing-chaos-engineering-into-devops-practices/

• Shared Responsibility Model for Resiliency, AWS:
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/shared-responsibility-model-for-resiliency.html

• Observability in the realm of Chaos Engineering, Subhra Mondal, Prateek Sachan, Medium, Jun 10, 2020:
https://medium.com/@nabtechblog/observability-in-the-realm-of-chaos-engineering-99089226ca51

• Digital Transformation Statistics and Digital Skills [2022-2023], Josh Sultan, Digital Adoption, August 9, 2023:
https://www.digital-adoption.com/digital-transformation-statistics/

• Are you an Elite DevOps performer? Find out with the Four Keys Project, Dina Graves Portman, Google Cloud, September 23,
2020: https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance

• Chaos Engineering — How to safely inject failure in your application? Adrian Hornsby, Medium, May 8, 2020:
https://medium.com/the-cloud-architect/chaos-engineering-q-a-how-to-safely-inject-failure-ced26e11b3db

• AWS re:Invent 2022 - Building confidence through chaos engineering on AWS (ARC307), AWS Events, YouTube, January
2023: https://www.youtube.com/watch?v=tm5GEePP1PY

• Chaos Engineering Fundamentals: The Steady State, Joshua Root, GitHub, 2019:
https://github.com/chaosiq/chaosiq/blob/master/chaos-engineering-steady-state.md

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises

across industries to reimagine business models, accelerate innovation, and maximize growth by

harnessing digital technologies. As a digital transformation partner to more than 700 clients,

LTIMindtree brings extensive domain and technology expertise to help drive superior competitive

differentiation, customer experiences, and business outcomes in a converging world. Powered by

82,000+ talented and entrepreneurial professionals across more than 30 countries, LTIMindtree — a

Larsen & Toubro Group company — combines the industry-acclaimed strengths of erstwhile Larsen and

Toubro Infotech and Mindtree in solving the most complex business challenges and delivering

transformation at scale. For more information, please visit https://www.ltimindtree.com/

HTTPS://WWW.LTIMINDTREE.COM/

