
Why and how should
you optimize Docker
images with Jib?

WHITEPAPER

As enterprises across industries look to fast-track their digital transformation journeys, business leaders are

increasingly looking to reduce their application startup time and reduce general costs over unwanted network

and internet usage. Towards that end, software developers and DevOps engineers are now looking to build,

run, and share applications with containers. However, as they do so, they are running into some issues.

The key challenges for Java developers, storage and long
build times

Currently, most Java based applications are using Spring Boot in Docker with Maven and are creating

standard fat Boot jars with all the dependencies packed inside. In this process, a new 250 MB image is created

each time anything is built, even if it's very little code change, resulting in inefficient storage space usage

in our private repository. This is because the fat jar contains both shared dependencies (which change

infrequently) and our code.

In a container orchestration system, the container image is pulled from the image registry to a host running a

container engine. This process is called scheduling. Pulling large-sized images from the registry result in long

scheduling times in container orchestration systems and long build times in CI pipelines.

Large docker images and frequent release cycles can eat up a lot of gigabytes of storage space and

increase network traffic. This can be potentially poor design, especially for cloud designs where you pay for

traffic usage and storage. Pulling 1GB of data from your registry every single time results in long scheduling

processes and long build times in CI pipelines.

©LTIMindtree | Privileged and Confi dential 2023 2

FAT JAR

Traditional
Approach

of building
JAR

Scheduling
Limitation
of Docker
Daemon

Performance
Overhead

Build
Minutes

©LTIMindtree | Privileged and Confi dential 2023 3

When you multiply this scenario in context to all our pipelines, think about the time the CI systems will

need to place this container and then multiply with the number of applications you have. Further, you have

an additional step of first creating a docker image and then pushing it to Artifactory/ECR, again resulting in

the consumption of increased build minutes.

Most organizations also have a problem installing docker on the developer workspace. Hence testing

these builds will need to be deployed into systems that have docker installed and then validated, which can be

time-consuming during critical times.

So, what’s the solution?

We can resolve the above problem using two different approaches.

• Building and deploying only the delta

• Abstract image creation

1. Building and deploying only the delta

The process of deploying changes to an existing application is called delta deployment. Delta deployment

supports several scenarios in which a full deployment process would be inefficient. Typically, we deploy the

parts of the application that are frequently updated.

Using Layering Feature in Spring

Spring Boot splits the content of *fat Jar* into 4 layers. However, by default, this layering feature is disabled

and needs to be explicitly enabled with the Spring Boot Maven plugin.

Traditional Builds

The traditional way of

building Docker images with

Spring Boot is to use a

docker file.

Application changes often

Other items change rarely

Changes very rarely

FAT JAR, which contains all

Spring framework

dependencies, internal and

external dependencies

The size of the image in

AAMC ranges from

350 – 800 MB
Base Image – Small RHEL UBI Kernel

Java11 JRE

(gets pushed on app changes)

Spring Boot Uber Jar

Tomcat Application Server

Spring Application
Classes

Spring Boot
Core Classes

Single Layer Container Image

https://www.ibm.com/docs/en/db2/11.1?topic=flows-delta-deployment-application

©LTIMindtree | Privileged and Confi dential 2023 4

Maven Plugin

Layering to the Solution

Spring
Application

Classes

Spring Boot Core Classes

Open J9 Java11 JRE

Base Image – Small RHEL UBI Kernel

Changes often

Changes rarely
Changes very rarely

Spring Boot splits the
content of FAT JAR into

four layers, but by
default, this layering

feature is disabled and
needs to be explicitly

enabled with the Spring
Boot Maven Plugin.

Layer Name

Application Application classes and resources

Any dependency, whose version contains SNAPSHOT

JAR loader classes

Any dependency, whose version does not contain SNAPSHOT

Snapshot Dependencies

Spring-Boot-Loader

Dependencies

Contents

The default layers are:

Docker Engine

Optimization

Layer 2

11KB257 MB

FAT JAR
Application + Dependencies

Layer 1

Application

Layer 1
Dependencies

Layer 0
JDK

FAT JAR
Application + Dependencies

Layer 1

©LTIMindtree | Privileged and Confi dential 2023 5

The layers are defined in a layers.idx file in the order that they should be added to the Docker image.

These layers get cached in the host after the first pull since they do not change. Only the updated application

layer is downloaded to the host, which is faster because of the reduced size.

Building the Image with Dependencies Extracted in
Separate Layers

We will build the final image in two stages using a method called multi-stage build. In the first stage, we will

extract the dependencies, and in the second stage, we will copy the extracted dependencies to the final image.

https://reflectoring.io/spring-boot-docker/

©LTIMindtree | Privileged and Confi dential 2023 6

Shrinking data volume

Benefits of this approach:

• Improves application performance by reducing startup time.

• Package size is reduced, thus reducing network bandwidth and cost.

• CI -Build minutes are decreased, which makes this approach cost-effective.

• Container security is addressed by JIB

2. Abstracting image creation

Google Jib builds containers without using a Docker file or requiring a Docker installation. You can use Jib in

the Jib plugins for Maven (https://github.com/GoogleContainerTools/jib/tree/master/jib-maven-plugin) or

Gradle (https://github.com/GoogleContainerTools/jib/tree/master/jib-gradle-plugin), or you can use the Jib Java

library (https://github.com/GoogleContainerTools/jib/tree/master/jib-core).

Google Jib: Jib organizes your application into distinct layers, dependencies, resources, and classes and

utilizes the Docker image layer caching to keep builds fast by only rebuilding changes. Jib's layer organization

and the small base image keep the overall image size small which improves performance and portability. You

don't need to know the best practices for creating Docker files or having Docker installed.

https://github.com/GoogleContainerTools/jib
https://www.docker.com/

Jib is available as a plugin for Maven

(https://github.com/GoogleContainerTools/jib/tree/master/jib-maven-plugin) and Gradle

(https://github.com/GoogleContainerTools/jib/tree/master/jib-gradle-plugin) and requires minimal

configuration. Simply add the plugin to your build definition and configure the target image. If you are

building to a private registry, make sure to configure Jib with credentials for your registry.

(https://github.com/GoogleContainerTools/jib/tree/master/jib-maven-plugin#authentication-methods) The

easiest way to do this is to use credential helpers like docker-credential-gcr

(https://github.com/GoogleContainerTools/jib/blob/master/docs/configure-gcp-credentials.md). Jib also

provides additional rules for building an image to a Docker daemon if you need it.

Use Case

For this example, we'll provide our Docker Hub credentials to .m2/settings.xml:

(https://github.com/GoogleContainerTools/jib/tree/master/jib-maven-plugin) and Gradle

(https://github.com/GoogleContainerTools/jib/tree/master/jib-gradle-plugin) and requires minimal

Jib is available as a plugin for Maven

©LTIMindtree | Privileged and Confi dential 2023 7

Docker Build Flow

Jib Build Flow

Project

Project

Docker Installation

Docker File

Build Context
Container Image
(Docker Cache)

Container Image
(Registry)

Container Image
(Registry)

pushbuild

jib

https://github.com/GoogleContainerTools/jib/tree/master/jib-maven-plugin#authentication-methods
https://cloudtoolsforjava.page.link/sZZL

And that's it! This will build the docker image of our application and push it to the Jfrog.

We can, of course, upload the image to Google Container Registry

(https://cloud.google.com/container-registry/) or Amazon Elastic Container Registry

(https://aws.amazon.com/ecr/) in a similar way.

Simplifying the Maven Command

Also, we can shorten our initial command by configuring the plugin in our pom instead, like any other

Maven plugin.

And that's it! This will build the docker image of our application and push it to the Jfrog.

Google Container Registry

(https://cloud.google.com/container-registry/) or Amazon Elastic Container Registry

in a similar way.

©LTIMindtree | Privileged and Confi dential 2023 8

Deploying to Jfrog with Jib:

Now, we can use jib-maven-plugin, or the Gradle equivalent, to containerize our application with a simple

command:

where IMAGE_PATH is the target path in the container registry.

For example, to upload the image spring-jib-app to Jfrog, we would do:

mvn compile com.google.cloud.tools:jib-maven-plugin:2.5.0:build -Dimage=$IMAGE_PATH

export IMAGE_PATH=registry.hub.docker.com/spring-jib-app

https://cloud.google.com/container-registry/
https://aws.amazon.com/ecr/

©LTIMindtree | Privileged and Confi dential 2023

mvn compile jib:build

With this change, we can simplify our maven command:

Now, we can use jib-maven-plugin, or the Gradle equivalent, to containerize our application with a simple

command:

When we build the application, an image is created, and it is stored in Jfrog.

Benefits of this approach:

• Optimization will help teams share smaller images, improve performance, and make it easier to

debug problems.

• Docker caches images. If you need to create a custom base image, layers optimization, and multiple

instances of the same layers, it will speed up the load times and make it easier to track.

• Bypassing Docker daemon to be installed on developer machines is a boon for companies that have

restrictions to install docker on developer machines.

• JIB layers application binaries and thus deploys only layers only that change, thus reducing network

bandwidth and cost it incurred before to download the entire fat jar and deploy.

• All of the image creation and downloading are usually done via the CI platform. This further increases the

build minutes. Hence since JIB takes over and does this for us, we are effectively reducing the build

minutes, which makes this approach cost-effective.

In a nutshell:

Effective use of Jib containerizing applications has proven to reduce the scheduling time of the container

orchestration system. This has further resulted in reducing the application start-up time. Further reducing the

application start-up time. This approach also removes manual docker file creation, which is not

straightforward and can bring in adversities in application security. It also optimizes the containers by enabling

the layering feature, which extracts the dependencies in separate layers that get cached in the host, and the

thin layer of the application is downloaded during scheduling in container runtime engines.

9

About LTIMindtree

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to reimagine
business models, accelerate innovation, and maximize growth by harnessing digital technologies. As a digital transformation
partner to more than 700+ clients, LTIMindtree brings extensive domain and technology expertise to help drive superior
competitive differentiation, customer experiences, and business outcomes in a converging world. Powered by nearly
90,000 talented and entrepreneurial professionals across more than 30 countries, LTIMindtree — a Larsen & Toubro Group
company — combines the industry-acclaimed strengths of erstwhile Larsen and Toubro Infotech and Mindtree in solving the most
complex business challenges and delivering transformation at scale. For more information, please visit www.ltimindtree.com.

Santosh Malimath
Sr Project Manager/Technical Architect

Over the last 16 years, Santosh has worked with several large enterprises.

His experience spans as a Full-stack development, DevSecOps engineering

and IOT solutioning. During the last 6 years he has engaged in analyzing and

creating project scope and milestones for several technical company

initiatives. Has been contributing to help define key partnerships to targets,

establishing technical relationships, and managing the day-to-day

interactions to build long-term business and marketing opportunities.

