
WHITEPAPER

The why, what, and
how of application
security testing

Cyberattacks affect both end users and business teams and continue to grow at a frightening scale.

Run-of-the-mill security services are no longer adequate to fight the battle against these new-age cyber

threats. Most modern applications are often available over various networks and are connected to the cloud.

In a world rife with ever-increasing cyber-security threats, these applications need multiple layers of security,

and that is where robust application security testing is an absolute must for organizations. Most successful

security breaches target exploitable vulnerabilities residing in the application layer, indicating the need for

enterprise IT departments to be extra vigilant about application security. If we don't care about vulnerabilities

that come with dependencies during application development, the applications are more likely to get

exposed to cyber-attacks later on.

Gartner defines ASOC tools as those that “streamline software vulnerability testing and remediation by

automating workflows. These tools are used to automate application security testing through a range of

methods. These include ingesting data from static, dynamic, and interactive sources through SAST/

DAST/IAST methods; software composition analysis [SCA]; vulnerability assessments, and other methods.

ASOC in a DevSecOps Pipelining

Risk AssessmentOrchestration Testing

Policy driven
Orchestration

Executes right test
at the right time

Combines,
correlate, and

prioritise.

• SAST • DAST

• SCA

• IAST

2©LTIMindtree | Privileged and Confidential

The Intelligent Orchestration and Code Dx integration

Source: synopsys.com

This is where security scanning tools
come in.
To address these issues and make the applications secure, organizations are using a range of security

scanning tools to identify and rectify vulnerabilities in applications before they are run in production

environments.

In general, 4 categories of security scanning tools - SAST, DAST, IAST, and SCA - are used by developers

to ensure that applications go through a robust security check in the development environment itself.

Policy

Pipeline

workflow

Analytics
3rd Party AST Tools

Pen testing

Threat Modeling

Continuous
Feedback

Defect tracking

Right Tools
Right Time
Right Depth

Right Resources

Developers

Manual Testing

Code review

Intelligent Orchestration

Normalize

Deduplicate

Correlate

Risk prioritization

AVM Dashboard

AST Scanning
Tools

SAST

DAST

IAST

SCA

Vulnerability
Scanning Tools

Infra Scans

Code Repo

CI/CD Server

Binary Repo Container Scans

Compliance checks

Hardening checks

DevOps Pipeline Scanning Tools

Security reporting

Upload manual

results

Pull AST resultsTrigger AST tools

Pull scan tools results

Sync/Async

3©LTIMindtree | Privileged and Confidential

https://www.synopsys.com/blogs/software-security/intelligent-orchestration-code-dx-integration/

Source: mend.io

Static Application Security Testing
(SAST)
SAST is a white-box testing method where the source code is analyzed from the inside out while the

components are at rest. SAST analyses application source code, byte code, and binaries for coding and

design flaws that suggest possible security vulnerabilities.

APPLICATION SECURITY TESTING

Coverage Low False
Positives

Exploitability Code
Visibility

Remediation
Advice

SDLC
Integration

Broad
Platform
Support

Se
cu

ri
ty

Sc

an
n

in
g

To

o
ls

SAST

DAST

IAST

SCA

R
u

n
ti

m
e

Pr
o

te
ct

io
n

 T
o

o
ls WAF

Bot
Mngmt

RASP

4©LTIMindtree | Privileged and Confidential

https://www.mend.io/resources/blog/ast-application-security-testing/

SAST tool integration in DevSecOps pipeline

Source: synopsys.com

Pre-commit
checks

SAST01

Commit-time
checks

SAST02

SAST03
Build-time

checks

Test-time
checks

SAST04

Deploy-time
checks

Inline Activities

SAST01 SAST02 SAST03 SAST04

The SAST tool runs in
the IDE as developers
write code. The tool is
configured to detect

vulnerabilities that have
zero false positives,

including issues such as
SQL injection and XSS.
The scan should take

seconds.

The SAST tool is automated
on the CI server. The tool is

configured for the client’s top
10 issues, such as command

injection and hard-coded
keys. The tool also uses rules

from SAST01. The scan
should take 4-5 minutes so

developers should get
feedback.

The SAST tool uses rules
for the OWASP Top 10

and any customized
rulesets written for

client-specific APIs. The
scan can be run in
parallel with other

activities and should take
10-15 minutes.

The SAST tool uses
comprehensive rulesets.
All previous rulesets are
excluded. The goal is to
find issues before the

code goes to production.
The scan should take

anywhere from an hour
to 3-4 hours, depending
on production velocity.

• Perform threat modelling if
assets or threats have
changed.

• Perform an architecture risk
if new APIs are added, such
as APIs for AuthZ or AuthN.

• If the code size has
increased considerably, it
should trigger a manual
code review

• Compile, build code, and configure and run SAST with a
limited ruleset

• Automate security testing

• Configure more comprehensive SAST ruleset to run

• Configure jobs to identify risks in third-party components

• Automate security testing and risk-based security tests

• Alert development teams on critical and high-risk issues.

• Digitally sign artifacts and store them in artifact repositories

• Configure broader rulesets for SAST

• Configure IAST and DAST tools and automate testing

• Configure and automate deployment of the latest good
build to the staging environment

• Alert development teams on critical and high-risk issues

• Configure security tests for configuration code

• Automate configuration management and runtime
environment provisioning

• Schedule security scanning, & perform vulnerability scanning

• Assist in bug bounty programs

• Create an incident response plan

• Provide insight to the DevOps team to drive a threat
intelligence program

• Major API changes should
trigger a manual code review.

• If too many vulnerabilities
are found in SAST scans, it
should trigger penetration
testing.

• Changes in security APIs
should trigger an update to
threat modelling or the
architecture risk analysis.

• All activities break
the build as
configured.

• Gather metrics for
all out-of-band and
inline activities.

• Push defects for all
out-of-band and
inline activities.

Out of band activities

5©LTIMindtree | Privileged and Confidential

https://www.synopsys.com/blogs/software-security/steps-to-integrate-sast-into-devsecops-pipeline/

Source: synopsys.com

Dynamic Application Security Testing
(DAST)
DAST is a black-box testing method. The key difference between the SAST and DAST methods is that

while in SAST, application code is scanned line-by-line while the app itself is at rest; in DAST, developers

simulate external attacks on applications when the apps are running to look for possible security

vulnerabilities as well as find weaknesses in the app architecture. The DAST method cannot access the

source code. Instead, this method attempts to penetrate an application from the outside to find potential

vulnerabilities in its exposed interface. As its name suggests, the DAST method is applied in a dynamic

environment (often a QA environment) instead of a production environment.

2. Test verify-time
checks
Deep dive with SAST,
DAST, IAST, and fuzz
testing. Break the
build, gather metrics,
and automate bug
tracking.

3. Deploy-time
hardening checks
Automate
configuration
management.
Continuous
monitoring, red
teaming, vulnerability
scanning, and bug
bounties. Gather
metrics and defects.

Automated bug
tracking
All vulnerabilities
from security
activities are
pushed
automatically to
bug tracking
systems.

Automated
metrics gathering
Metrics are
gathered from all
activities and are
used to control
gates in the build
pipeline.

Developer
Check code into
version control
system.

Pre-commit hooks
Review changes to
code and configuration
before committing to
source control
repositories.

Commit-time
checks
Incremental SAST
with predefined
rulesets to provide
quick feedback for
developers within
seconds of code
check-in. Break the
build, gather metrics,
and automate bug
tracking.

After successful
build-time checks,
digitally sign artefacts
and store them in
artefact repository.

Bug
tracking

Metrics
dashboard

1. Build-time checks
Automate SAST with
comprehensive
rulesets, software
component analysis,
security testing, and
risk-based security
tests, Break the build,
gather metrics, and
automate bug
tracking

Testing
environment

Staging
environment

Production
environment

Artifact
repository

C1 server
farms

Version
control

6©LTIMindtree | Privileged and Confidential

https://www.synopsys.com/blogs/software-security/steps-to-integrate-sast-into-devsecops-pipeline/

Best practices on DAST

7©LTIMindtree | Privileged and Confidential

What kind of scans should you run, and at which point?
Depending on the environments and places in the pipeline where they are used, scans can be generally put

under four categories - lightning, safe, normal, and full. For instance, as the name suggests, lightning scans

are very fast scans (usually completed in under 60 seconds) and are hence used together with the unit and

functional test so that the flow is not stalled. However, the lightning scans can only test relatively small

vulnerabilities related to SSL/TLS, HTTP headers, and cookies attributes. However, these are still important

since hackers often use loopholes in these to get started before mounting major attacks. The "safe scan,"

on the other hand, has a broader range as they cover all the vulnerabilities. However, these scans don't

make POST, PUT, DELETE or UPDATE requests as they work with a relatively limited set of payloads and

methods. The best scenario to use safe scans in the product pipeline is the stage close to the production

environment. The "full scan" on the other hand, is, as the name suggests, a complete scan that uses the

largest number of payloads. This is typically run at the staging/testing environments, and even though

some of the payloads used in this are risky, the "full scan" is generally carried out in its entirety to ensure

that nothing in the production stage is broken.

Which results are allowed to block the pipeline (or block a deploy)?
Most modern DSAT scanners have the capability to map vulnerabilities accurately to possible risks. This

allows the users to gauge the severity of each result and customize how each of these results can affect

either the pipeline or the deploy process. Based on these, there are three possible different levels of risk -

high, medium, and low. Keeping this in mind, we can use the API and set up a process where the pipeline

or a deploy is blocked only if there is a medium or high vulnerability. For example, in order to push a

change to production, there should be a process in place that checks if there’s a medium or high

vulnerability in the last DAST scan in staging (and if there’s no scan currently running). If that test passes,

then the change is secure enough to be pushed into production. For example, we can block a deploy only

for certain vulnerabilities, like SQL injections (because of the impact).

Scheduled Tests
Another way to use a DAST scanner is to schedule periodic tests. Based on our schedule, weekly, bi-weekly,

or even nightly scans. Since DAST scans can take a while, the recommendation is to scan after a day of

work, at night. We need to make these scans a requirement for pushing to production. To successfully run

scheduled tests and not block the pipeline, we can create a ‘separate’ pipeline rather than integrating them

into your current staging one, but this needs to be linked

Source: blog.probely.com

Interactive Application Security Testing (IAST)
The interactive application security method is used to scan an app's source code in the post-build, dynamic

environment. The advantage of the ISAT method is that it enables the tester to identify the problematic line

of code and notify the developer for remediation real-time.

In both the SAST and IAST methods, the application code is scanned directly. However, the key difference

between them is that IAST scans the code in the post-build, dynamic environment through the instrumen-

tation of the code. In this method, agents and sensors deployed in the app are used to analyze the code

and identify potential vulnerabilities. The key advantage of the IAST method is that it can easily integrate

with the CI/CD pipeline. In addition, it's highly scalable and can be both automated as well as used manu-

ally by a human tester.

Software Composition Analysis (SCA)
SCA performs automated scans of an application’s code base to provide visibility into open-source software

usage. This includes identifying all open-source components, their license compliance data, and security

vulnerabilities. In addition to providing visibility into open-source software use, SCA tools also prioritize

open-source vulnerabilities and ideally provide insights and auto-remediation to resolve security threats.

PRE-COMMIT
CHECKS

QUICK SAST FULL SAST
RUNTIME
TESTING

MONITORING

Real-time SAST in IDE,
Pre-commit checks

Incremental
SAST Scans

Complete
SAST Scan

Weekly safe DAST scans,
Pentesting, Bug Bounties,

Monitoring

DAST, Fuzz testing,
hardening checks

PRE-
COMMIT

COMMIT BUILD TEST DEPLOY PRODU-
CTION

CONTINUOUS INTEGRATION

8©LTIMindtree | Privileged and Confidential

CONTINUOUS DELIVERY

https://blog.probely.com/integrating-web-vulnerability-scanners-in-continuous-integration-dast-for-ci-cd-7637eaff26bd

Source: synopsys.com

Security Testing in CICD
It all comes down to how security becomes an integral part of the Software Development Lifecycle of the

application and the right way to do that is via CICD. All of the above security testing strategies are to be

integrated into the CICD workflow to ensure relevant guard rails get automatically integrated into the

system. This way we need to manually check the applications at different stages of the SDLC.

Pre-Commit Checks: The objective of pre-commit checks is to enable activities such as updating a threat

model when controls or new assets are added to the application. Pre-commit checks are also used to

enable manual code reviews if a large change in the code base is detected. These checks can also trigger

risk analysis while identifying security vulnerabilities.

Next, we can create hooks to trigger activities such as threat modelling and architecture risk analysis, and

manual code review. We can also create additional hooks to review your configuration files for hard-coded

credentials.

Trigger Threat Modeling

Trigger ARA

Trigger Manual Code Review

Email Notifications

Configuration Review

Compile and Build Code

Run SAST Tools

Automatic Security Testing

Gather Metrics

Break the Build

Comprehensive SAST

SCA

Risk Based Security Testing

Gather Metrics

Break the Build

Broader SAST

DAST/AST

Malicious Code Detection

Gather Metrics

Break the Build

Configuration Management

Provisioning Runtime Environment

CI/CD
Pipeline

Security Scanning
Vulnerability Scanning
Bug Bounty Program
Threat Intelligence

Pre-Deployment Checks

Post-Deployment Checks

Build-time Checks

Test-time Checks

Deploy-time Checks

Pre-commit Checks

Commit-time Checks

9©LTIMindtree | Privileged and Confidential

https://www.synopsys.com/blogs/software-security/devsecops-pipeline-checklist/

Source: parasoft.com

From Security perspective:

• Commit time Checks: In this method, the top 10 vulnerabilities of apps are identified manually by a

quick, incremental scan designed to provide feedback to developers within minutes. For instance, using

a typical SAST tool, we can identify common vulnerabilities like SQL injections and XSS (cross-site

scripting).

• Build time checks: In this type of check, a range of methods are used. The build time checks can

include anything from open-source management to risk-based security tests, processes like signing

binary releases with PGP signatures, storing artifacts in repositories, and even a deeper level of SAST.

• Test Time checks: The test time checks are usually done after a SAST method has already been used

and can be configured to run on DAST tools. The test time checks are generally used to test both

common critical and high-severity issues. This method typically uses a tool's full set of security rules.

• Deploy time checks: The deploy time checks are used in a post-deployment phase to periodically

trigger security tests and ensure that the changes in the production environment didn't trigger any

further security issues.

10©LTIMindtree | Privileged and Confidential

https://www.parasoft.com/blog/a-better-approach-to-devsecops/

Key benefits of having robust application
security testing

Conclusion
To tackle the ever-looming threats of cyber-attacks, organizations are looking for wholistic cloud security and

resiliency solutions that go beyond the scope of security for the sake of compliance. In that context, our

well-defined application testing security maturity models help organizations with a model that brings

together all the aspects of application security testing in an well-orchestrated manner. Head over here to

explore more about LTIMindtree’s cyber security practice. https://www.ltimindtree.com/services/cyber-security/

Authors

Organizations need robust application security testing for both to minimize business disruptions and

cultivate a range of technical and business benefits.

• Protecting applications against cyber-attacks by identifying potential vulnerabilities.

• Fixing vulnerabilities in the early stage of development and thus minimizing the cost by reducing

the regression of development cycles

• Helping development, security, and DevOps teams understand the process of making applications

secure.

• Enabling organizations to build customer confidence through creating apps that are capable of

protecting user data.

Santosh Malimath

Sr Project Manager/Technical Architect

Over the last 16 years, Santosh has worked with several large enterprises.

His experience spans as a Full-stack development, DevSecOps engineering

and IOT solutioning. During the last 6 years he has engaged in analyzing

and creating project scope and milestones for several technical company

initiatives. Has been contributing to help define key partnerships to targets,

establishing technical relationships, and managing the day-to-day

interactions to build long-term business and marketing opportunities.

11©LTIMindtree | Privileged and Confidential

http://www.ltimindtree.com/services/cyber-security/

About LTIMindtree

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to reimagine

business models, accelerate innovation, and maximize growth by harnessing digital technologies. As a digital transformation

partner to more than 700 clients, LTIMindtree brings extensive domain and technology expertise to help drive superior

competitive differentiation, customer experiences, and business outcomes in a converging world. Powered by 82,000+ talented

and entrepreneurial professionals across more than 30 countries, LTIMindtree — a Larsen & Toubro Group company — combines

the industry-acclaimed strengths of erstwhile Larsen and Toubro Infotech and Mindtree in solving the most complex business

challenges and delivering transformation at scale. For more information, please visit https://www.ltimindtree.com/.

https://www.ltimindtree.com/

	The why, what, and how of application security testing
	Slide Number 2
	Slide Number 3
	Static Application Security Testing
	Slide Number 5
	Dynamic Application Security Testing (DAST)
	Best practices on DAST
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Key benefits of having robust application security testing
	Slide Number 12

