
Whitepaper

Six Steps to Modernize
your DataEcosystem to
make Collabora�ve
Intelligence Possible
Author : Manoj Karanth

Sowjanyakumar Kothapalli

Table of Contents

1. Separation of Compute and Storage 3

2. Assess Workload Type 4

3. Data Processing and Data Store optimization 6

4. Design Consumption Landscape 7

– SQL 7

– Machine Learning 8

5. Assess Security and Governance 8

6. Data Migration 9

7. What does LTIMindtree bring to the table? 10

8. References 11

Organizations across the world are striving towards

being more data-driven in their decision-making. The

right mix of human and machine intelligence is crucial

for organizations to succeed in this journey. Machine

intelligence needs to be supported with the right data

infrastructure, and organizations have invested in

setting up the same with the likes of data lakes, data

warehouses etc.

At the same time, these investments have not quite

provided the outcome that organizations had expected.

A common set of challenges that organizations have

faced are:

Business value of insights:

and KPIs which could generate valuable insights for the

business has always been a challenge.

Time to insight:

to process data faster, organizations have proceeded to

crunch more data. However, the availability of the data

in time remains a key aim.

Cost per insight:

system, a big challenge in making it available for other

teams to use is the cost. Big data environments guzzle a

lot of computing power which increase the cost of the

environment specially in the cloud.

This has led organizations to take a re-look at their data

estates and look to address these challenges. Over the

years, technologies in the Big Data landscape have

Separation of Compute and Storage
One of the founding principles in Hadoop was that for data processing to be scaled horizontally, compute had to be

moved to where the storage resided. This would reduce the load on network I/O transfer and make the systems truly

distributed. To process the data e�ciently, these machines or n

When we transported the same concept to cloud-based

environments, the cost of running and scaling started

becoming increasingly high. When one is running a data

lake, most of the time one needs the storage and not the

processing capacity. In Hadoop-based data environ

ments, compute and storage are tied together with HDFS

as the file system. E.g. In AWS, d2 is the most cost-e�

cient storage instance type

In the cloud, object storage is durable, reliable and

cheap, while the network capabilities continue to

increase. This led to a decoupling of compute and

3

Organizations across the world are striving towards

being more data-driven in their decision-making. The

right mix of human and machine intelligence is crucial

for organizations to succeed in this journey. Machine

intelligence needs to be supported with the right data

infrastructure, and organizations have invested in

setting up the same with the likes of data lakes, data

warehouses etc.

At the same time, these investments have not quite

provided the outcome that organizations had expected.

A common set of challenges that organizations have

faced are:

Business value of insights: Choosing the right use cases

and KPIs which could generate valuable insights for the

business has always been a challenge.

Time to insight: While Big Data improved the capability

to process data faster, organizations have proceeded to

crunch more data. However, the availability of the data

in time remains a key aim.

Cost per insight: Once the data is gathered in the

system, a big challenge in making it available for other

teams to use is the cost. Big data environments guzzle a

lot of computing power which increase the cost of the

environment specially in the cloud.

This has led organizations to take a re-look at their data

estates and look to address these challenges. Over the

years, technologies in the Big Data landscape have

continued to change with Spark emerging as the de-fac-

to processing mechanism for data needs. These technol -

ogies alleviate the limitations in first-generation big data

systems built with Apache Hadoop-based systems with

distributions like Cloudera, Hortonworks etc.

In this paper, we highlight how one can approach this

modernization path. We have identified Databricks on

AWS as the target environment. New generation data

platforms are unified i.e. we have the same stack for

batch, streaming, machine learning. We have chosen

Databricks since it is best performing Spark engine and

is the leading player in bringing unified platforms to life

The modernization approach is composed of the

following steps

Separation of Compute and Storage
One of the founding principles in Hadoop was that for data processing to be scaled horizontally, compute had to be

moved to where the storage resided. This would reduce the load on network I/O transfer and make the systems truly

distributed. To process the data e�ciently, these machines or nodes would have high memory and CPU requirements.

Separation of
Compute and

Storage

Workload Type
and

Resource Usage

Data Processing
and Data Store

Optimization

Design

Consumption

Landscape

Assess Security

and Governance

Data Migration

and Movement

When we transported the same concept to cloud-based

environments, the cost of running and scaling started

becoming increasingly high. When one is running a data

lake, most of the time one needs the storage and not the

processing capacity. In Hadoop-based data environ -

ments, compute and storage are tied together with HDFS

as the file system. E.g. In AWS, d2 is the most cost-efficient

storage instance type

In the cloud, object storage is durable, reliable and

cheap, while the network capabilities continue to

increase. This led to a decoupling of compute and

Organizations across the world are striving towards

being more data-driven in their decision-making. The

right mix of human and machine intelligence is crucial

for organizations to succeed in this journey. Machine

intelligence needs to be supported with the right data

infrastructure, and organizations have invested in

setting up the same with the likes of data lakes, data

warehouses etc.

At the same time, these investments have not quite

provided the outcome that organizations had expected.

A common set of challenges that organizations have

faced are:

Business value of insights: Choosing the right use cases

and KPIs which could generate valuable insights for the

business has always been a challenge.

Time to insight: While Big Data improved the capability

to process data faster, organizations have proceeded to

crunch more data. However, the availability of the data

in time remains a key aim.

Cost per insight: Once the data is gathered in the

system, a big challenge in making it available for other

teams to use is the cost. Big data environments guzzle a

lot of computing power which increase the cost of the

environment specially in the cloud.

This has led organizations to take a re-look at their data

estates and look to address these challenges. Over the

years, technologies in the Big Data landscape have

continued to change with Spark emerging as the de-fac-

to processing mechanism for data needs. These technol-

ogies alleviate the limitations in first-generation big data

systems built with Apache Hadoop-based systems with

distributions like Cloudera, Hortonworks etc.

In this paper, we highlight how one can approach this

modernization path. We have identified Databricks on

AWS as the target environment. New generation data

platforms are unified i.e. we have the same stack for

batch, streaming, machine learning. We have chosen

Databricks since it is best performing Spark engine and

is the leading player in bringing unified platforms to life

The modernization approach is composed of the

following steps

Separation of Compute and Storage
One of the founding principles in Hadoop was that for data processing to be scaled horizontally, compute had to be

moved to where the storage resided. This would reduce the load on network I/O transfer and make the systems truly

distributed. To process the data e�ciently, these machines or nodes would have high memory and CPU requirements.

When we transported the same concept to cloud-based

environments, the cost of running and scaling started

becoming increasingly high. When one is running a data

lake, most of the time one needs the storage and not the

processing capacity. In Hadoop-based data environ-

ments, compute and storage are tied together with HDFS

as the file system. E.g. In AWS, d2 is the most cost-e�-

cient storage instance type

In the cloud, object storage is durable, reliable and

cheap, while the network capabilities continue to

increase. This led to a decoupling of compute and

storage, and most cloud-native data architectures are adopting this mode with object storage as the Data Lake.

Modern data platforms like Databricks provide the elastic capability required to utilize the power of separating

storage and compute.

This has a significant impact on the cost as outlined in the example below taking AWS as an example to store 1PB of

data using a 40-node cluster. The calculation was done using the logic that a M5a.8X large cluster will run for about

12 hours a day. This instance type cluster is slightly high, since in most practical cases, due to varied loads, much

smaller instance type clusters with fewer nodes can be configured.

4

storage, and most cloud-native data architectures are adopting this mode with object storage as the Data Lake.

Modern data platforms like Databricks provide the elastic capability required to utilize the power of separating

storage and compute.

This has a significant impact on the cost as outlined in the exa mple below taking AWS as an example to store 1PB of

data using a 40-node cluster. The calculation was done using the logic that a M5a.8X large cluster will run for about

12 hours a day. This instance type cluster is slightly high, since in most practical cases, due to varied loads, much

smaller instance type clusters with fewer nodes can be configured.

Hadoop

100K USD

Datab�cks

48 TB per node * 40 d2.8x nodes = 5.52* 40 +

15*0.78 other

Storage: S3 cost = 25K

Processing: 40 node M5a.8x large

Hos�ng (40 * 0.867x360 hours) = 12.5K

DBU cost (40* 0.4*4.91*360) = 28.5K

66K USD

Illustrative Cost Comparison (50% utilization)

Consump�on Repo�s, Models

Assess Workload Type
In addition to separation of storage and compute, data processing time and cost can be optimized through an

understanding of the workloads. This impacts both time to insight and cost per insight. In Hadoop-based environments,

multiple workloads run on the same cluster to optimize the spend. Hence, it is important to assess the di�erent

workloads and their most e�cient processing environments. Following is an example of di�erent workloads

Adhoc Query

Repo� and KPI Processing

Clickstream Processing

Transac�on Processing

Illustrative Workload Distribution on a 24-Hour Time Scale

storage, and most cloud-native data architectures are adopting this mode with object storage as the Data Lake.

Modern data platforms like Databricks provide the elastic capability required to utilize the power of separating

mple below taking AWS as an example to store 1PB of

data using a 40-node cluster. The calculation was done using the logic that a M5a.8X large cluster will run for about

12 hours a day. This instance type cluster is slightly high, since in most practical cases, due to varied loads, much

5

 Batch-based data ingestion workloads: These are

 usually ingested in fixed time intervals. Here too, the

 workloads are varied.

 Input data like clickstream usually have a lot of

 JSON which requires memory bound processing.

 Batch processing of typical structured data have

 more crunching which is usually more CPU bound.

 Continuous data ingestion in small data streams.

 Some examples are live transaction data which again

 could vary between memory and CPU bound processing.

 However, the required capacity is much lesser.

 The real reason behind the data ingestion is to derive

 insights. Therefore, we have a lot of processing for

 which we require data aggregation and summary

 calculations. This has a lot of memory processing.

 Along with this, we have workloads for report

 calculations, predictive algorithm data processing, ad

 hoc queries etc .

While one could optimize it at the time of production,

over time, the usage patterns change. Data ingestion

increases with addition of new data sources. This puts

additional pressure on the platform. The increased data

processing also requires more time for KPI calculations,

leading to contention in resources, in turn also limiting

the time and resource available for ad hoc queries. E.g.

One Hive query could hog the entire cluster.

As a result, customers experience both under-utilized

capacity and a capacity-crunch because of fluctuating

demand. It is also not easy to scale up or down on

demand due to the specific machine requirements (e.g.

EC2 instance types with ephemeral storage as an

additional cost). This means that new environments

cannot be brought up quickly.

One of the promises of new data technology on the

cloud is serverless and on-demand data infrastructure.

Separating the workload types and processing times

helps us plan for the same. If we look at Databricks,

which is designed for running spark e�ectively in the

cloud, we see a built-in cluster manager, which provides

features like auto scaling and auto termination.

Databricks also provides connectors with cloud storage

and integrated notebook environment which helps with

development immensely.

Given the power of auto scaling and auto termination,

one could design the environment more optimally for

the workload types as outlined in the example.

Workload Types and Cluster Configurations

Workload Type Cluster Type Cost Benefit

Memory Bound Data
Ingestion Jobs

Spot instances help keep the
cost down. No issues with noisy
neighbours

Having auto-scaling instead of
a fixed cluster helps keep the
cost down and maintain the
balance between on-demand
and spot instances

This provides more control
based on the job. E.g. One can
run a complete cluster based
on spot instances for a data
exploration workload

Same as above

Run these workloads in their own cluster which is a
combination of on-demand and spot instances. Use
instances which are memory optimized. Shut down
once the job is done

The workload requests are varied across di�erent
departments. Using a shared cluster designed for
auto-scaling helps manage the varied demand

Depending on the usage being time-bound, one can
design a specific cluster with pre-built libraries for
easier configuration

Similar to the earlier case, but on a cluster with
compute optimized instances

CPU-intensive Data
Ingestion Jobs

Ad hoc Queries

Reports, KPI Crunching,

Statistical Models

Data Processing and
Data Store optimization
While data processing was substantially improved

through cluster and workload optimization, further

improvements can be made by looking at the data stores

and intermediate data processing. Typical Big Data tools

have limitations with respect to source/sinks & type of

data processing - whether batch or streaming. Hadoop

does not integrate well with multiple cloud source/sinks

e.g. Data Warehouse, NoSQL databases. This leads to

multiple tools being used with an additional workflow

(Oozie, Step Functions, Data Pipeline etc.) on top. This

can cause non-optimized code, as data needs to be

written to an intermediate storage multiple times. Also,

there may be delays as developers with disparate skill

sets need to collaborate.

This is best highlighted by the dual use of HBase and

Hive as the data store formats. HBase is used primarily

for updating dimensions and Hive tables for appending

transactions. While HBase is write-optimized, it isn’t as

query-friendly as Hive, which is read-optimized. Therefore,

most systems have both transaction and report stores.

Typically, this leads to data in HBase getting converted

to Hive through a complex intermediate staging layer.

Additionally, hive tables stored on top of parquet files

perform very badly if they need to read many small files.

Hence, ingesting data from streaming applications needs

Data Processing and
Data Store optimization
While data processing was substantially improved

through cluster and workload optimization, further

improvements can be made by looking at the data stores

and intermediate data processing. Typical Big Data tools

have limitations with respect to source/sinks & type of

data processing - whether batch or streaming. Hadoop

does not integrate well with multiple cloud source/sinks

e.g. Data Warehouse, NoSQL databases. This leads to

multiple tools being used with an additional workflow

(Oozie, Step Functions, Data Pipeline etc.) on top. This

can cause non-optimized code, as data needs to be

written to an intermediate storage multiple times. Also,

there may be delays as developers with disparate skill

sets need to collaborate.

This is best highlighted by the dual use of HBase and

Hive as the data store formats. HBase is used primarily

for updating dimensions and Hive tables for appending

transactions. While HBase is write-optimized, it isn’t as

query-friendly as Hive, which is read-optimized. Therefore,

most systems have both transaction and report stores.

Typically, this leads to data in HBase getting converted

to Hive through a complex intermediate staging layer.

Additionally, hive tables stored on top of parquet files

perform very badly if they need to read many small files.

Hence, ingesting data from streaming applications needs

Performance Di�erence between Data Environments

In addition to cost, using the right cluster sizes and types leads to a decrease in processing time. The following

example highlights the same.

Data Processing and
Data Store optimization
While data processing was substantially improved

through cluster and workload optimization, further

improvements can be made by looking at the data stores

and intermediate data processing. Typical Big Data tools

have limitations with respect to source/sinks & type of

data processing - whether batch or streaming. Hadoop

does not integrate well with multiple cloud source/sinks

e.g. Data Warehouse, NoSQL databases. This leads to

multiple tools being used with an additional workflow

(Oozie, Step Functions, Data Pipeline etc.) on top. This

can cause non-optimized code, as data needs to be

written to an intermediate storage multiple times. Also,

there may be delays as developers with disparate skill

sets need to collaborate.

This is best highlighted by the dual use of HBase and

Hive as the data store formats. HBase is used primarily

for updating dimensions and Hive tables for appending

transactions. While HBase is write-optimized, it isn’t as

query-friendly as Hive, which is read-optimized. Therefore,

most systems have both transaction and report stores.

Typically, this leads to data in HBase getting converted

to Hive through a complex intermediate staging layer.

Additionally, hive tables stored on top of parquet files

perform very badly if they need to read many small files.

Hence, ingesting data from streaming applications needs

an additional administrative task of merging small files.

This increases the administrative complexity (e.g.

merging small files), while increasing the data

processing time.

Having a common data store and processing (data

management system) can greatly alleviate this pain of

multiple processing technologies and data stores. This

starts with agreeing on a common open file format for

data storage. Today, Parquet has emerged as the most

common used format, since it is better optimized for fast

query and data compression.

With Databricks, we have delta which is a unified data

management system that fits this need. HBase and Hive

external tables can be replaced with a unified table,

Delta (Parquet-based), which is read-optimized. The

ACID merge features ensure that the performance of

read on HBase tables is comparable to Hive tables. Most

importantly, we don’t have to convert the HBase tables

into Hive tables for downstream analysis.

The solution also enables RDBMS features such as ACID

transactions, UPDATE/Merge and DELETE. Elegant

OPTIMIZE/VACUUM is available for the consolidation/

update of small part files. This makes it easier to clean up

or correct bad data at a record level. This also means that

we don’t have to run additional administrative tasks like

merging small files which translates to redirecting the

available resources for this purpose. Additionally, data

cleanup of Hive tables is easy.

6

Data Processing and
Data Store optimization
While data processing was substantially improved

through cluster and workload optimization, further

improvements can be made by looking at the data stores

and intermediate data processing. Typical Big Data tools

have limitations with respect to source/sinks & type of

data processing - whether batch or streaming. Hadoop

does not integrate well with multiple cloud source/sinks

e.g. Data Warehouse, NoSQL databases. This leads to

multiple tools being used with an additional workflow

(Oozie, Step Functions, Data Pipeline etc.) on top. This

can cause non-optimized code, as data needs to be

written to an intermediate storage multiple times. Also,

there may be delays as developers with disparate skill

sets need to collaborate.

This is best highlighted by the dual use of HBase and

Hive as the data store formats. HBase is used primarily

for updating dimensions and Hive tables for appending

transactions. While HBase is write-optimized, it isn’t as

query-friendly as Hive, which is read-optimized. Therefore,

most systems have both transaction and report stores.

Typically, this leads to data in HBase getting converted

to Hive through a complex intermediate staging layer.

Additionally, hive tables stored on top of parquet files

perform very badly if they need to read many small files.

Hence, ingesting data from streaming applications needs

an additional administrative task of merging small files.

This increases the administrative complexity (e.g.

merging small files), while increasing the data process-

ing time.

Having a common data store and processing (data

management system) can greatly alleviate this pain of

multiple processing technologies and data stores. This

starts with agreeing on a common open file format for

data storage. Today, Parquet has emerged as the most

common used format, since it is better optimized for fast

query and data compression.

With Databricks, we have delta which is a unified data

management system that fits this need. HBase and Hive

external tables can be replaced with a unified table,

Delta (Parquet-based), which is read-optimized. The

ACID merge features ensure that the performance of

read on HBase tables is comparable to Hive tables. Most

importantly, we don’t have to convert the HBase tables

into Hive tables for downstream analysis.

The solution also enables RDBMS features such as ACID

transactions, UPDATE/Merge and DELETE. Elegant

OPTIMIZE/VACUUM is available for the consolidation/

update of small part files. This makes it easier to clean up

or correct bad data at a record level. This also means that

we don’t have to run additional administrative tasks like

merging small files which translates to redirecting the

available resources for this purpose. Additionally, data

cleanup of Hive tables is easy.

Data Processing and
Data Store optimization
While data processing was substantially improved

through cluster and workload optimization, further

improvements can be made by looking at the data stores

and intermediate data processing. Typical Big Data tools

have limitations with respect to source/sinks & type of

data processing - whether batch or streaming. Hadoop

does not integrate well with multiple cloud source/sinks

e.g. Data Warehouse, NoSQL databases. This leads to

multiple tools being used with an additional workflow

(Oozie, Step Functions, Data Pipeline etc.) on top. This

can cause non-optimized code, as data needs to be

written to an intermediate storage multiple times. Also,

there may be delays as developers with disparate skill

sets need to collaborate.

This is best highlighted by the dual use of HBase and

Hive as the data store formats. HBase is used primarily

for updating dimensions and Hive tables for appending

transactions. While HBase is write-optimized, it isn’t as

query-friendly as Hive, which is read-optimized. Therefore,

most systems have both transaction and report stores.

Typically, this leads to data in HBase getting converted

to Hive through a complex intermediate staging layer.

Additionally, hive tables stored on top of parquet files

perform very badly if they need to read many small files.

Hence, ingesting data from streaming applications needs

an additional administrative task of merging small files.

This increases the administrative complexity (e.g.

merging small files), while increasing the data process-

ing time.

Having a common data store and processing (data

management system) can greatly alleviate this pain of

multiple processing technologies and data stores. This

starts with agreeing on a common open file format for

data storage. Today, Parquet has emerged as the most

common used format, since it is better optimized for fast

query and data compression.

With Databricks, we have delta which is a unified data

management system that fits this need. HBase and Hive

external tables can be replaced with a unified table,

Delta (Parquet-based), which is read-optimized. The

ACID merge features ensure that the performance of

read on HBase tables is comparable to Hive tables. Most

importantly, we don’t have to convert the HBase tables

into Hive tables for downstream analysis.

The solution also enables RDBMS features such as ACID

transactions, UPDATE/Merge and DELETE. Elegant

OPTIMIZE/VACUUM is available for the consolidation/

update of small part files. This makes it easier to clean up

or correct bad data at a record level. This also means that

we don’t have to run additional administrative tasks like

merging small files which translates to redirecting the

available resources for this purpose. Additionally, data

cleanup of Hive tables is easy.

Data Processing and
Data Store optimization
While data processing was substantially improved

through cluster and workload optimization, further

improvements can be made by looking at the data stores

and intermediate data processing. Typical Big Data tools

have limitations with respect to source/sinks & type of

data processing - whether batch or streaming. Hadoop

does not integrate well with multiple cloud source/sinks

e.g. Data Warehouse, NoSQL databases. This leads to

multiple tools being used with an additional workflow

(Oozie, Step Functions, Data Pipeline etc.) on top. This

can cause non-optimized code, as data needs to be

written to an intermediate storage multiple times. Also,

there may be delays as developers with disparate skill

sets need to collaborate.

This is best highlighted by the dual use of HBase and

Hive as the data store formats. HBase is used primarily

for updating dimensions and Hive tables for appending

transactions. While HBase is write-optimized, it isn’t as

query-friendly as Hive, which is read-optimized. Therefore,

most systems have both transaction and report stores.

Typically, this leads to data in HBase getting converted

to Hive through a complex intermediate staging layer.

Additionally, hive tables stored on top of parquet files

perform very badly if they need to read many small files.

Hence, ingesting data from streaming applications needs

an additional administrative task of merging small files.

This increases the administrative complexity (e.g.

merging small files), while increasing the data process-

ing time.

Having a common data store and processing (data

management system) can greatly alleviate this pain of

multiple processing technologies and data stores. This

starts with agreeing on a common open file format for

data storage. Today, Parquet has emerged as the most

common used format, since it is better optimized for fast

query and data compression.

With Databricks, we have delta which is a unified data

management system that fits this need. HBase and Hive

external tables can be replaced with a unified table,

Delta (Parquet-based), which is read-optimized. The

ACID merge features ensure that the performance of

read on HBase tables is comparable to Hive tables. Most

importantly, we don’t have to convert the HBase tables

into Hive tables for downstream analysis.

The solution also enables RDBMS features such as ACID

transactions, UPDATE/Merge and DELETE. Elegant

OPTIMIZE/VACUUM is available for the consolidation/

update of small part files. This makes it easier to clean up

or correct bad data at a record level. This also means that

we don’t have to run additional administrative tasks like

merging small files which translates to redirecting the

available resources for this purpose. Additionally, data

cleanup of Hive tables is easy.

From a performance perspective in our experience, we

have seen significant improvements in read and write

speeds across Hive and HBase.

 Improvement in Hive table reads by about 30-40%

 on Databricks delta post tuning with techniques like

 ZOrdering (co-locate related information in the same

 set of files) while reads on HBase tables saw

 70-80% improvement.

 In Hive, 60 -70% improvement in inserts was

 observed while updates are almost same speed

 as HBase

An additional complexity that sometimes arises is when

both batch and stream data sets need to be processed

tools which bring their own challenges. Spark and more

specifically Databricks can provide a unified API which

can handle both batch & streaming data sources.

Taken together, this makes the data processing pipeline

more performant and much easier to develop and

maintain. Along the way, there are a few nice touches

that Databricks provides to further improve the processing

speed and improve productivity. Some of these are

 Data caching to improve query and processing speeds

 Schema enforcement and Schema Evolution, which

 help manage data changes and evolutions more

 e�ectively.

 Time-travel: Databricks Delta automatically versions

 the Big Data that is stored in the data lake allowing

 one to access any version of that data. This allows for

 audit and roll back data in case of accidental bad

 writes or deletes to its original value. Multiple

 versions of data can be accessed using either the

 timestamp or version number. This is similar to

 temporal tables in Amazon RDS for SQL Server, and

 was missing from Big Data systems.

Design Consumption
Landscape
The reason for the data infrastructure is to drive insights.

Therefore, the consumption layer which includes the

analytical and reporting store becomes extremely

important. This feeds the reporting layer, data APIs,

From a performance perspective in our experience, we

have seen significant improvements in read and write

speeds across Hive and HBase.

 Improvement in Hive table reads by about 30-40%

 on Databricks delta post tuning with techniques like

 ZOrdering (co-locate related information in the same

 set of files) while reads on HBase tables saw

 70-80% improvement.

 In Hive, 60 -70% improvement in inserts was

 observed while updates are almost same speed

 as HBase

An additional complexity that sometimes arises is when

both batch and stream data sets need to be processed

tools which bring their own challenges. Spark and more

specifically Databricks can provide a unified API which

can handle both batch & streaming data sources.

Taken together, this makes the data processing pipeline

more performant and much easier to develop and

maintain. Along the way, there are a few nice touches

that Databricks provides to further improve the processing

speed and improve productivity. Some of these are

 Data caching to improve query and processing speeds

 Schema enforcement and Schema Evolution, which

 help manage data changes and evolutions more

 e�ectively.

 Time-travel: Databricks Delta automatically versions

 the Big Data that is stored in the data lake allowing

 one to access any version of that data. This allows for

 audit and roll back data in case of accidental bad

 writes or deletes to its original value. Multiple

 versions of data can be accessed using either the

 timestamp or version number. This is similar to

 temporal tables in Amazon RDS for SQL Server, and

 was missing from Big Data systems.

Design Consumption
Landscape
The reason for the data infrastructure is to drive insights.

Therefore, the consumption layer which includes the

analytical and reporting store becomes extremely

important. This feeds the reporting layer, data APIs,

machine learning APIs among others. There are two

primary modes of consumption we need to focus on.

These are SQL engine performance and Machine

Learning workspaces.

SQL
In traditional Hadoop-based architectures, Hive is

largely the analytical layer with queries, followed by

HBase in some scenarios. As the performance improve-

ment need increases, we also need the presence of

data-marts and data-warehouses.

It is in this context that we need to view the evolution

of Spark SQL. While Spark was initially only a compute

platform, today, it is a fully functioning SQL engine

capable of interfacing with the JDBC engine. As stated

by Spark, Spark SQL is designed to be compatible with

the Hive Metastore, SerDes and UDFs.

We saw an increased usage of Cloud Datawarehouse

others. A common theme among these architectures is

an increased focus on the outcome as against the

design. i.e. The focus is on SQL query performance. e.g.

performance, so does serverless querying on Azure

Synapse and Google Big Query. However, for the

purpose of this paper, the key insight is that SQL contin-

ues to be strong and has emerged as the most important

language for insight generation.

Databricks Delta, in addition to providing ACID compli-

ant tables, also provides faster query execution with

indexing, statistics, and auto-caching support. Like other

organizations, query performance continues to be a key

theme, with the recent introduction of dynamic file

pruning, which increases query performance by 2x to 8x.

This will be followed by a faster JDBC driver going by

the Databricks public roadmap.

Therefore, since the choices have evolved, any moderni-

zation of the data environment will require the evaluation

of these platforms, based on the consumption needs.

From a performance perspective in our experience, we

have seen significant improvements in read and write

speeds across Hive and HBase.

 Improvement in Hive table reads by about 30-40%

 on Databricks delta post tuning with techniques like

 ZOrdering (co-locate related information in the same

 set of files) while reads on HBase tables saw

 70-80% improvement.

 In Hive, 60 -70% improvement in inserts was

 observed while updates are almost same speed

 as HBase

An additional complexity that sometimes arises is when

both batch and stream data sets need to be processed

tools which bring their own challenges. Spark and more

specifically Databricks can provide a unified API which

can handle both batch & streaming data sources.

Taken together, this makes the data processing pipeline

more performant and much easier to develop and

maintain. Along the way, there are a few nice touches

that Databricks provides to further improve the processing

speed and improve productivity. Some of these are

 Data caching to improve query and processing speeds

 Schema enforcement and Schema Evolution, which

 help manage data changes and evolutions more

 effectively.

 Time-travel: Databricks Delta automatically versions

 the Big Data that is stored in the data lake allowing

 one to access any version of that data. This allows for

 audit and roll back data in case of accidental bad

 writes or deletes to its original value. Multiple

 versions of data can be accessed using either the

 timestamp or version number. This is similar to

 temporal tables in Amazon RDS for SQL Server, and

 was missing from Big Data systems.

Design Consumption
Landscape
The reason for the data infrastructure is to drive insights.

Therefore, the consumption layer which includes the

analytical and reporting store becomes extremely

important. This feeds the reporting layer, data APIs,

machine learning APIs among others. There are two

primary modes of consumption we need to focus on.

These are SQL engine performance and Machine

Learning workspaces.

SQL
In traditional Hadoop-based architectures, Hive is

largely the analytical layer with queries, followed by

HBase in some scenarios. As the performance improve -

ment need increases, we also need the presence of

data-marts and data-warehouses.

It is in this context that we need to view the evolution

of Spark SQL. While Spark was initially only a compute

platform, today, it is a fully functioning SQL engine

capable of interfacing with the JDBC engine. As stated

by Spark, Spark SQL is designed to be compatible with

the Hive Metastore, SerDes and UDFs.

We saw an increased usage of Cloud Datawarehouse

others. A common theme among these architectures is

an increased focus on the outcome as against the

design. i.e. The focus is on SQL query performance. e.g.

performance, so does serverless querying on Azure

Synapse and Google Big Query. However, for the

purpose of this paper, the key insight is that SQL contin -

ues to be strong and has emerged as the most important

language for insight generation.

Databricks Delta, in addition to providing ACID compli -

ant tables, also provides faster query execution with

indexing, statistics, and auto-caching support. Like other

organizations, query performance continues to be a key

theme, with the recent introduction of dynamic file

pruning, which increases query performance by 2x to 8x.

This will be followed by a faster JDBC driver going by

the Databricks public roadmap.

Therefore, since the c hoices have evolved, any moderni -

zation of the data environment will require the evaluation

of these platforms, based on the consumption needs.

7

From a performance perspective in our experience, we

have seen significant improvements in read and write

speeds across Hive and HBase.

 Improvement in Hive table reads by about 30-40%

 on Databricks delta post tuning with techniques like

 ZOrdering (co-locate related information in the same

 set of files) while reads on HBase tables saw

 70-80% improvement.

 In Hive, 60 -70% improvement in inserts was

 observed while updates are almost same speed

 as HBase

An additional complexity that sometimes arises is when

both batch and stream data sets need to be processed

tools which bring their own challenges. Spark and more

specifically Databricks can provide a unified API which

can handle both batch & streaming data sources.

Taken together, this makes the data processing pipeline

more performant and much easier to develop and

maintain. Along the way, there are a few nice touches

that Databricks provides to further improve the processing

speed and improve productivity. Some of these are

 Data caching to improve query and processing speeds

 Schema enforcement and Schema Evolution, which

 help manage data changes and evolutions more

 e�ectively.

 Time-travel: Databricks Delta automatically versions

 the Big Data that is stored in the data lake allowing

 one to access any version of that data. This allows for

 audit and roll back data in case of accidental bad

 writes or deletes to its original value. Multiple

 versions of data can be accessed using either the

 timestamp or version number. This is similar to

 temporal tables in Amazon RDS for SQL Server, and

 was missing from Big Data systems.

Design Consumption
Landscape
The reason for the data infrastructure is to drive insights.

Therefore, the consumption layer which includes the

analytical and reporting store becomes extremely

important. This feeds the reporting layer, data APIs,

machine learning APIs among others. There are two

primary modes of consumption we need to focus on.

These are SQL engine performance and Machine

Learning workspaces.

SQL
In traditional Hadoop-based architectures, Hive is

largely the analytical layer with queries, followed by

HBase in some scenarios. As the performance improve-

ment need increases, we also need the presence of

data-marts and data-warehouses.

It is in this context that we need to view the evolution

of Spark SQL. While Spark was initially only a compute

platform, today, it is a fully functioning SQL engine

capable of interfacing with the JDBC engine. As stated

by Spark, Spark SQL is designed to be compatible with

the Hive Metastore, SerDes and UDFs.

We saw an increased usage of Cloud Datawarehouse

others. A common theme among these architectures is

an increased focus on the outcome as against the

design. i.e. The focus is on SQL query performance. e.g.

performance, so does serverless querying on Azure

Synapse and Google Big Query. However, for the

purpose of this paper, the key insight is that SQL contin-

ues to be strong and has emerged as the most important

language for insight generation.

Databricks Delta, in addition to providing ACID compli-

ant tables, also provides faster query execution with

indexing, statistics, and auto-caching support. Like other

organizations, query performance continues to be a key

theme, with the recent introduction of dynamic file

pruning, which increases query performance by 2x to 8x.

This will be followed by a faster JDBC driver going by

the Databricks public roadmap.

Therefore, since the choices have evolved, any moderni-

zation of the data environment will require the evaluation

of these platforms, based on the consumption needs.

From a performance perspective in our experience, we

have seen significant improvements in read and write

speeds across Hive and HBase.

 Improvement in Hive table reads by about 30-40%

 on Databricks delta post tuning with techniques like

 ZOrdering (co-locate related information in the same

 set of files) while reads on HBase tables saw

 70-80% improvement.

 In Hive, 60 -70% improvement in inserts was

 observed while updates are almost same speed

 as HBase

An additional complexity that sometimes arises is when

both batch and stream data sets need to be processed

tools which bring their own challenges. Spark and more

specifically Databricks can provide a unified API which

can handle both batch & streaming data sources.

Taken together, this makes the data processing pipeline

more performant and much easier to develop and

maintain. Along the way, there are a few nice touches

that Databricks provides to further improve the processing

speed and improve productivity. Some of these are

 Data caching to improve query and processing speeds

 Schema enforcement and Schema Evolution, which

 help manage data changes and evolutions more

 e�ectively.

 Time-travel: Databricks Delta automatically versions

 the Big Data that is stored in the data lake allowing

 one to access any version of that data. This allows for

 audit and roll back data in case of accidental bad

 writes or deletes to its original value. Multiple

 versions of data can be accessed using either the

 timestamp or version number. This is similar to

 temporal tables in Amazon RDS for SQL Server, and

 was missing from Big Data systems.

Design Consumption
Landscape
The reason for the data infrastructure is to drive insights.

Therefore, the consumption layer which includes the

analytical and reporting store becomes extremely

important. This feeds the reporting layer, data APIs,

machine learning APIs among others. There are two

primary modes of consumption we need to focus on.

These are SQL engine performance and Machine

Learning workspaces.

SQL
In traditional Hadoop-based architectures, Hive is

largely the analytical layer with queries, followed by

HBase in some scenarios. As the performance improve-

ment need increases, we also need the presence of

data-marts and data-warehouses.

It is in this context that we need to view the evolution

of Spark SQL. While Spark was initially only a compute

platform, today, it is a fully functioning SQL engine

capable of interfacing with the JDBC engine. As stated

by Spark, Spark SQL is designed to be compatible with

the Hive Metastore, SerDes and UDFs.

We saw an increased usage of Cloud Datawarehouse

others. A common theme among these architectures is

an increased focus on the outcome as against the

design. i.e. The focus is on SQL query performance. e.g.

performance, so does serverless querying on Azure

Synapse and Google Big Query. However, for the

purpose of this paper, the key insight is that SQL contin-

ues to be strong and has emerged as the most important

language for insight generation.

Databricks Delta, in addition to providing ACID compli-

ant tables, also provides faster query execution with

indexing, statistics, and auto-caching support. Like other

organizations, query performance continues to be a key

theme, with the recent introduction of dynamic file

pruning, which increases query performance by 2x to 8x.

This will be followed by a faster JDBC driver going by

the Databricks public roadmap.

Therefore, since the choices have evolved, any moderni-

zation of the data environment will require the evaluation

of these platforms, based on the consumption needs.

capable of interfacing with the JDBC engine. As stated

by Spark, Spark SQL is designed to be compatible with

others. A common theme among these architectures is

design. i.e. The focus is on SQL query performance. e.g.

purpose of this paper, the key insight is that SQL contin

ues to be strong and has emerged as the most important

indexing, statistics, and auto-caching support. Like other

organizations, query performance continues to be a key

pruning, which increases query performance by 2x to 8x.

zation of the data environment will require the evaluation

Machine Learning
Commercial distributions of Hadoop ship their own

Machine Learning workbench, which allow for secure

and collaborative data science workloads. However,

these collaboration mechanisms are proprietary and not

based on open standards.

The dominant standard today in MLflow: MLflow brings in

the discipline of DevOps to the Machine Learning world.

This helps us track the experiments, code and model

repositories, and experimentation to deployment along

with an integrated notebook environment. Databricks and

AWS provide a couple of options to integrate MLflow in

the Machine Learning workflow.

Databricks Machine Learning Runtime (MLR) provides

scalable clusters that supports popular frameworks like

Keras, Tensorflow, PyTorch, SparkML and Scikit-learn.

MLR enables data scientists and ML practitioners to

rapidly build models using its Auto-ML capabilities.

Managed MLflow can help manage MDLC (Model Devel-

opment Life Cycle) like experimentation, deployment,

and model repository. MLR also supports MLeap and the

portability of models across platforms and flexible

deployments on docker containers, SageMaker and

other cloud provider platforms.

Assess Security and
Governance

process. The security and operational fitness for Hadoop

environments was designed without the cloud in mind.

Cloud-based Data Lake o�erings have evolved from

HDFS-compatible cloud distributions to native cloud

Data Lakes Should be built on proven object storage.

This allows for data organization based on finer grained

time scale partitions, and richer retention and control

policies with seamless identity and role propagation for

data zones.

Current data platforms like Databricks on Cloud there-

fore use the security and operational harness provided

by the cloud providers. With respect to AWS, Databricks

provides controls like IAM credential pass-through to

integrate with the AWS ecosystem. Other AWS principles

like VPC peering, PrivateLink and Policy enforcement

only add to this.

Along with this, from a data governance stand-point,

we need an integration with data catalogues. On the

AWS platform, the natural integration is with AWS Glue.

Databricks can leverage Glue as the meta-store, even

across multiple workspaces. All the metadata can reside

in one data catalog, easily accessible across their data

lake which can be accessed from entire data lake. One

advantage of keeping all the metadata in Glue is that it

can be leveraged by other tools in the AWS stack, e.g.

Athena & CloudWatch etc. Having a single meta-store

across all AWS resources brings in significant operational

e�ciencies while designing enterprise ETL and reporting,

as one doesn’t have to sync multiple meta-stores,

and can query AWS Glue using powerful built in APIs

additionally.

Machine Learning
Commercial distributions of Hadoop ship their own

Machine Learning workbench, which allow for secure

and collaborative data science workloads. However,

these collaboration mechanisms are proprietary and not

based on open standards.

The dominant standard today in MLflow: MLflow brings in

the discipline of DevOps to the Machine Learning world.

This helps us track the experiments, code and model

repositories, and experimentation to deployment along

with an integrated notebook environment. Databricks and

AWS provide a couple of options to integrate MLflow in

the Machine Learning workflow.

Databricks Machine Learning Runtime (MLR) provides

scalable clusters that supports popular frameworks like

Keras, Tensorflow, PyTorch, SparkML and Scikit-learn.

MLR enables data scientists and ML practitioners to

rapidly build models using its Auto-ML capabilities.

Managed MLflow can help manage MDLC (Model Devel-

opment Life Cycle) like experimentation, deployment,

and model repository. MLR also supports MLeap and the

portability of models across platforms and flexible

deployments on docker containers, SageMaker and

other cloud provider platforms.

Assess Security and
Governance

process. The security and operational fitness for Hadoop

environments was designed without the cloud in mind.

Cloud-based Data Lake o�erings have evolved from

HDFS-compatible cloud distributions to native cloud

Data Lakes Should be built on proven object storage.

This allows for data organization based on finer grained

time scale partitions, and richer retention and control

policies with seamless identity and role propagation for

data zones.

Current data platforms like Databricks on Cloud there-

fore use the security and operational harness provided

by the cloud providers. With respect to AWS, Databricks

provides controls like IAM credential pass-through to

integrate with the AWS ecosystem. Other AWS principles

like VPC peering, PrivateLink and Policy enforcement

only add to this.

Along with this, from a data governance stand-point,

we need an integration with data catalogues. On the

AWS platform, the natural integration is with AWS Glue.

Databricks can leverage Glue as the meta-store, even

across multiple workspaces. All the metadata can reside

in one data catalog, easily accessible across their data

lake which can be accessed from entire data lake. One

advantage of keeping all the metadata in Glue is that it

can be leveraged by other tools in the AWS stack, e.g.

Athena & CloudWatch etc. Having a single meta-store

across all AWS resources brings in significant operational

e�ciencies while designing enterprise ETL and reporting,

as one doesn’t have to sync multiple meta-stores,

and can query AWS Glue using powerful built in APIs

additionally.

Machine Learning
Commercial distributions of Hadoop ship their own

Machine Learning workbench, which allow for secure

and collaborative data science workloads. However,

these collaboration mechanisms are proprietary and not

based on open standards.

The dominant standard today in MLflow: MLflow brings in

the discipline of DevOps to the Machine Learning world.

This helps us track the experiments, code and model

repositories, and experimentation to deployment along

with an integrated notebook environment. Databricks and

AWS provide a couple of options to integrate MLflow in

the Machine Learning workflow.

Databricks Machine Learning Runtime (MLR) provides

scalable clusters that supports popular frameworks like

Keras, Tensorflow, PyTorch, SparkML and Scikit-learn.

MLR enables data scientists and ML practitioners to

rapidly build models using its Auto-ML capabilities.

Managed MLflow can help manage MDLC (Model Devel-

opment Life Cycle) like experimentation, deployment,

and model repository. MLR also supports MLeap and the

portability of models across platforms and flexible

deployments on docker containers, SageMaker and

other cloud provider platforms.

Assess Security and
Governance

process. The security and operational fitness for Hadoop

environments was designed without the cloud in mind.

Cloud-based Data Lake o�erings have evolved from

HDFS-compatible cloud distributions to native cloud

Data Lakes Should be built on proven object storage.

This allows for data organization based on finer grained

time scale partitions, and richer retention and control

policies with seamless identity and role propagation for

data zones.

Current data platforms like Databricks on Cloud there -

fore use the security and operational harness provided

by the cloud providers. With respect to AWS, Databricks

provides controls like IAM credential pass-through to

integrate with the AWS ecosystem. Other AWS principles

like VPC peering, PrivateLink and Policy enforcement

only add to this.

8

Along with this, from a data governance stand-point,

we need an integration with data catalogues. On the

AWS platform, the natural integration is with AWS Glue.

Databricks can leverage Glue as the meta-store, even

across multiple workspaces. All the metadata can reside

in one data catalog, easily accessible across their data

lake which can be accessed from entire data lake. One

advantage of keeping all the metadata in Glue is that it

can be leveraged by other tools in the AWS stack, e.g.

Athena & CloudWatch etc. Having a single meta-store

across all AWS resources brings in significant operational

e�ciencies while designing enterprise ETL and reporting,

as one doesn’t have to sync multiple meta-stores,

and can query AWS Glue using powerful built in APIs

additionally.

Machine Learning
Commercial distributions of Hadoop ship their own

Machine Learning workbench, which allow for secure

and collaborative data science workloads. However,

these collaboration mechanisms are proprietary and not

based on open standards.

The dominant standard today in MLflow: MLflow brings in

the discipline of DevOps to the Machine Learning world.

This helps us track the experiments, code and model

repositories, and experimentation to deployment along

with an integrated notebook environment. Databricks and

AWS provide a couple of options to integrate MLflow in

the Machine Learning workflow.

Databricks Machine Learning Runtime (MLR) provides

scalable clusters that supports popular frameworks like

Keras, Tensorflow, PyTorch, SparkML and Scikit-learn.

MLR enables data scientists and ML practitioners to

rapidly build models using its Auto-ML capabilities.

Managed MLflow can help manage MDLC (Model Devel-

opment Life Cycle) like experimentation, deployment,

and model repository. MLR also supports MLeap and the

portability of models across platforms and flexible

deployments on docker containers, SageMaker and

other cloud provider platforms.

Assess Security and
Governance

process. The security and operational fitness for Hadoop

environments was designed without the cloud in mind.

Cloud-based Data Lake o�erings have evolved from

HDFS-compatible cloud distributions to native cloud

Data Lakes Should be built on proven object storage.

This allows for data organization based on finer grained

time scale partitions, and richer retention and control

policies with seamless identity and role propagation for

data zones.

Current data platforms like Databricks on Cloud there-

fore use the security and operational harness provided

by the cloud providers. With respect to AWS, Databricks

provides controls like IAM credential pass-through to

integrate with the AWS ecosystem. Other AWS principles

like VPC peering, PrivateLink and Policy enforcement

only add to this.

Along with this, from a data governance stand-point,

we need an integration with data catalogues. On the

AWS platform, the natural integration is with AWS Glue.

Databricks can leverage Glue as the meta-store, even

across multiple workspaces. All the metadata can reside

in one data catalog, easily accessible across their data

lake which can be accessed from entire data lake. One

advantage of keeping all the metadata in Glue is that it

can be leveraged by other tools in the AWS stack, e.g.

Athena & CloudWatch etc. Having a single meta-store

across all AWS resources brings in significant operational

e�ciencies while designing enterprise ETL and reporting,

as one doesn’t have to sync multiple meta-stores,

and can query AWS Glue using powerful built in APIs

additionally.

Data Migration
Based on our experience, data migration from on-prem-

ise Hadoop-backed Data Lake to Databricks on Cloud

needs to be planned and executed across multiple

areas. The data estate includes HDFS Files, Hive and

HBase tables etc.

Feature and control structure mapping, rationalization of

data sets, choice of right migration strategy among

one-time full refresh, incremental copy, parallel run and

optional sync are key blocks in migration planning. A

well-defined and battle-tested Audit-Balance-Control

framework and associated task lists provide guidance for

clean data migration execution. Following is a detail of

the two main approaches.

 One-�me full refresh:In this approach, parquet files

 for Hive tables can be moved as is into S3 (Object

 Storage). We can create external tables on this data

 and load them into Databricks delta. However, if you

 have dimensional type of data in HBase, you have to

 first convert it into Hive and then move the data into

 S3 for loading data into delta tables.

 Incremental loads: Incremental loads can be

 achieved by using the timestamp of the record

 creation date. Using this timestamp, we should get

 the data as of that day and write it into parquet files

 on S3. Subsequently, the steps outlined above will

 remain the same.

Preserving DDLs and Schema is a best practice as

Databricks and Delta use Hive meta-store to persist

table metadata. This not only makes the migration easier

specially for Hive tables, but also helps in the migration

of security policies associated with a particular

column/table. The processing for data loading into Delta

itself can be made faster using multiple clusters, thereby

increasing the parallelism.

The data pipelines can be ported or rewritten depending

on the tools used. Any RDBMS data ingestion pipelines

created using Sqoop can be replaced easily by Spark

jobs, as Spark can ingest from a JDBC source and o�er

similar scaling benefits. Any ‘Legacy’ MapReduce job

should be rewritten to take numerous advantages

o�ered by Spark. Cloud-managed orchestration tools

are recommended for complex workflow management,

while Databricks Jobs API can be used for simple

workflows.

Hive workloads can be migrated to SparkSQL with

minimal changes, thanks to SparkSQL’s high a�nity to

Hive and support for UDFs like Hive. Serving Layer (BI

Tool Landscape) can be provided very well by built-in

connections as well as JDBC/ODBC connectors.

Along with this, from a data governance stand-point,

we need an integration with data catalogues. On the

AWS platform, the natural integration is with AWS Glue.

Databricks can leverage Glue as the meta-store, even

across multiple workspaces. All the metadata can reside

in one data catalog, easily accessible across their data

lake which can be accessed from entire data lake. One

advantage of keeping all the metadata in Glue is that it

can be leveraged by other tools in the AWS stack, e.g.

Athena & CloudWatch etc. Having a single meta-store

across all AWS resources brings in significant operational

e�ciencies while designing enterprise ETL and reporting,

as one doesn’t have to sync multiple meta-stores,

and can query AWS Glue using powerful built in APIs

Data Migration
Based on our experience, data migration from on-prem-

ise Hadoop-backed Data Lake to Databricks on Cloud

needs to be planned and executed across multiple

areas. The data estate includes HDFS Files, Hive and

HBase tables etc.

Feature and control structure mapping, rationalization of

data sets, choice of right migration strategy among

one-time full refresh, incremental copy, parallel run and

optional sync are key blocks in migration planning. A

well-defined and battle-tested Audit-Balance-Control

framework and associated task lists provide guidance for

clean data migration execution. Following is a detail of

the two main approaches.

 One-�me full refresh:In this approach, parquet files

 for Hive tables can be moved as is into S3 (Object

 Storage). We can create external tables on this data

 and load them into Databricks delta. However, if you

 have dimensional type of data in HBase, you have to

 first convert it into Hive and then move the data into

 S3 for loading data into delta tables.

 Incremental loads: Incremental loads can be

 achieved by using the timestamp of the record

 creation date. Using this timestamp, we should get

 the data as of that day and write it into parquet files

 on S3. Subsequently, the steps outlined above will

 remain the same.

Preserving DDLs and Schema is a best practice as

Databricks and Delta use Hive meta-store to persist

table metadata. This not only makes the migration easier

specially for Hive tables, but also helps in the migration

of security policies associated with a particular

column/table. The processing for data loading into Delta

itself can be made faster using multiple clusters, thereby

increasing the parallelism.

The data pipelines can be ported or rewritten depending

on the tools used. Any RDBMS data ingestion pipelines

created using Sqoop can be replaced easily by Spark

jobs, as Spark can ingest from a JDBC source and o�er

similar scaling benefits. Any ‘Legacy’ MapReduce job

should be rewritten to take numerous advantages

o�ered by Spark. Cloud-managed orchestration tools

are recommended for complex workflow management,

while Databricks Jobs API can be used for simple

workflows.

Hive workloads can be migrated to SparkSQL with

minimal changes, thanks to SparkSQL’s high a�nity to

Hive and support for UDFs like Hive. Serving Layer (BI

Tool Landscape) can be provided very well by built-in

connections as well as JDBC/ODBC connectors.

AWS platform, the natural integration is with AWS Glue.

across multiple workspaces. All the metadata can reside

advantage of keeping all the metadata in Glue is that it

across all AWS resources brings in significant operational

e�ciencies while designing enterprise ETL and reporting,

Data Migration
Based on our experience, data migration from on-prem-

ise Hadoop-backed Data Lake to Databricks on Cloud

needs to be planned and executed across multiple

areas. The data estate includes HDFS Files, Hive and

HBase tables etc.

Feature and control structure mapping, rationalization of

data sets, choice of right migration strategy among

one-time full refresh, incremental copy, parallel run and

optional sync are key blocks in migration planning. A

well-defined and battle-tested Audit-Balance-Control

framework and associated task lists provide guidance for

clean data migration execution. Following is a detail of

the two main approaches.

 One-�me full refresh:In this approach, parquet files

 for Hive tables can be moved as is into S3 (Object

 Storage). We can create external tables on this data

 and load them into Databricks delta. However, if you

 have dimensional type of data in HBase, you have to

 first convert it into Hive and then move the data into

 S3 for loading data into delta tables.

 Incremental loads: Incremental loads can be

 achieved by using the timestamp of the record

 creation date. Using this timestamp, we should get

 the data as of that day and write it into parquet files

 on S3. Subsequently, the steps outlined above will

 remain the same.

Preserving DDLs and Schema is a best practice as

Databricks and Delta use Hive meta-store to persist

table metadata. This not only makes the migration easier

specially for Hive tables, but also helps in the migration

of security policies associated with a particular

column/table. The processing for data loading into Delta

itself can be made faster using multiple clusters, thereby

increasing the parallelism.

The data pipelines can be ported or rewritten depending

on the tools used. Any RDBMS data ingestion pipelines

created using Sqoop can be replaced easily by Spark

jobs, as Spark can ingest from a JDBC source and o�er

similar scaling benefits. Any ‘Legacy’ MapReduce job

should be rewritten to take numerous advantages

o�ered by Spark. Cloud-managed orchestration tools

are recommended for complex workflow management,

while Databricks Jobs API can be used for simple

workflows.

Hive workloads can be migrated to SparkSQL with

minimal changes, thanks to SparkSQL’s high a�nity to

Hive and support for UDFs like Hive. Serving Layer (BI

Tool Landscape) can be provided very well by built-in

connections as well as JDBC/ODBC connectors.

Data Migration
Based on our experience, data migration from on-prem -

ise Hadoop-backed Data Lake to Databricks on Cloud

needs to be planned and executed across multiple

areas. The data estate includes HDFS Files, Hive and

HBase tables etc.

Feature and control structure mapping, rationalization of

data sets, choice of right migration strategy among

one-time full refresh, incremental copy, parallel run and

optional sync are key blocks in migration planning. A

well-defined and battle-tested Audit-Balance-Control

framework and associated task lists provide guidance for

clean data migration execution. Following is a detail of

the two main approaches.

 One-�me full refresh: In this approach, parquet files

 for Hive tables can be moved as is into S3 (Object

 Storage). We can create external tables on this data

 and load them into Databricks delta. However, if you

 have dimensional type of data in HBase, you have to

 first convert it into Hive and then move the data into

 S3 for loading data into delta tables.

 Incremental loads: Incremental loads can be

 achieved by using the timestamp of the record

 creation date. Using this timestamp, we should get

 the data as of that day and write it into parquet files

 on S3. Subsequently, the steps outlined above will

 remain the same.

Preserving DDLs and Schema is a best practice as

Databricks and Delta use Hive meta-store to persist

table metadata. This not only makes the migration easier

specially for Hive tables, but also helps in the migration

of security policies associated with a particular

column/table. The processing for data loading into Delta

itself can be made faster using multiple clusters, thereby

increasing the parallelism.

The data pipelines can be ported or rewritten depending

on the tools used. Any RDBMS data ingestion pipelines

created using Sqoop can be replaced easily by Spark

jobs, as Spark can ingest from a JDBC source and o�er

similar scaling benefits. Any ‘Legacy’ MapReduce job

should be rewritten to take numerous advantages

o�ered by Spark. Cloud-managed orchestration tools

are recommended for complex workflow management,

while Databricks Jobs API can be used for simple

workflows.

Hive workloads can be migrated to SparkSQL with

minimal changes, thanks to SparkSQL’s high a�nity to

Hive and support for UDFs like Hive. Serving Layer (BI

Tool Landscape) can be provided very well by built-in

connections as well as JDBC/ODBC connectors.

Preserving DDLs and Schema is a best practice as

Databricks and Delta use Hive meta-store to persist

table metadata. This not only makes the migration easier

specially for Hive tables, but also helps in the migration

of security policies associated with a particular

column/table. The processing for data loading into Delta

itself can be made faster using multiple clusters, thereby

The data pipelines can be ported or rewritten depending

on the tools used. Any RDBMS data ingestion pipelines

created using Sqoop can be replaced easily by Spark

jobs, as Spark can ingest from a JDBC source and o�er

similar scaling benefits. Any ‘Legacy’ MapReduce job

should be rewritten to take numerous advantages

o�ered by Spark. Cloud-managed orchestration tools

are recommended for complex workflow management,

while Databricks Jobs API can be used for simple

Hive workloads can be migrated to SparkSQL with

minimal changes, thanks to SparkSQL’s high a�nity to

Hive and support for UDFs like Hive. Serving Layer (BI

Tool Landscape) can be provided very well by built-in

connections as well as JDBC/ODBC connectors.

Preserving DDLs and Schema is a best practice as

Databricks and Delta use Hive meta-store to persist

table metadata. This not only makes the migration easier

specially for Hive tables, but also helps in the migration

column/table. The processing for data loading into Delta

itself can be made faster using multiple clusters, thereby

The data pipelines can be ported or rewritten depending

on the tools used. Any RDBMS data ingestion pipelines

created using Sqoop can be replaced easily by Spark

jobs, as Spark can ingest from a JDBC source and o�er

similar scaling benefits. Any ‘Legacy’ MapReduce job

should be rewritten to take numerous advantages

o�ered by Spark. Cloud-managed orchestration tools

are recommended for complex workflow management,

while Databricks Jobs API can be used for simple

Hive workloads can be migrated to SparkSQL with

minimal changes, thanks to SparkSQL’s high a�nity to

Hive and support for UDFs like Hive. Serving Layer (BI

Tool Landscape) can be provided very well by built-in

table metadata. This not only makes the migration easier

specially for Hive tables, but also helps in the migration

column/table. The processing for data loading into Delta

itself can be made faster using multiple clusters, thereby

The data pipelines can be ported or rewritten depending

on the tools used. Any RDBMS data ingestion pipelines

are recommended for complex workflow management,

What does LTIMindtree
bring to the table?
Our core philosophy is that data by itself

does not inspire action. We need the right

mix of human and machine intelligence

for real world solutions and insights. Unless

data infrastructure allows enterprise

 consumers to experiment and access the

data, this goal cannot be achieved. We have

worked with Global Top 1000 organizations

in achieving their data modernization

journey.

We bring these experiences to modernize

your data environments with certainty.

Our accelerators housed under ‘Decision

Moments,’ backed by the partnership with

the right technology partners accelerates

this journey. Together, we can decrease the

cost per insight, increase the value through

the identification of right business use

cases and improve the time to insight.

LTIMindtree Limited is a subsidiary of Larsen & Toubro Limited

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to reimagine business
models, accelerate innovation, and maximize growth by harnessing digital technologies. As a digital transformation partner to more than 700+
clients, LTIMindtree brings extensive domain and technology expertise to help drive superior competitive differentiation, customer experiences, and
business outcomes in a converging world. Powered by nearly 90,000 talented and entrepreneurial professionals across more than 30 countries,
LTIMindtree — a Larsen & Toubro Group company — combines the industry-acclaimed strengths of erstwhile Larsen and Toubro Infotech and
Mindtree in solving the most complex business challenges and delivering transformation at scale. For more information, please
visit www.ltimindtree.com.

About Authors

Manoj Karanth
Global Head- Data science and Engineering, LTIMindtree

With an industry experience of 20+ years, Manoj Karanth heads the Cloud, Data

Science and Engineering (Data Engineering, ML, AI) teams global ly for Mindtree’s

Digital Business. He works with Global 2000 clients to accelerate their cloud-first

journey and become insight-driven businesses using LTIMindtree's cloud-native technology

platforms. Manoj has built the technology center of excellence with leading cloud and

data analytics partners to deliver di�erentiated digital solutions. He has lived cloud

and product engineering through his two decade career

Sowjanyakumar Kothapalli
Principal- Big Data Architect, LTIMindtree

Sowjanyakumar Kothapalli is a Program Architect in our digital practice and has

24 years of experience working with fortune 500 companies; of which 15 years were

spent in building complex data platforms across various industries like infrastructure

management, structured finance, credit risk management & retail

References
https://docs.databricks.com/administration-guide/capacity-planning/cmbp.html

https://databricks.com/blog/2017/05/31/top-5-reasons-for-choosing-s3-over-hdfs.html

https://www.datanami.com/2018/05/16/big-data-file-formats-demystified/

https://databricks.com/blog/2017/10/25/databricks-delta-a-unified-management-system-for-real-time-big-data.html

https://databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html

https://www.knowledgelens.com/assets/migrating-to-data-lake-3_0.pdf

https://spark.apache.org/docs/latest/sql-migration-guide-hive-compatibility.html

https://databricks.com/blog/2020/04/30/faster-sql-queries-on-delta-lake-with-dynamic-file-pruning.html

https://docs.aws.amazon.com/whitepapers/latest/building-data-lakes/amazon-s3-data-lake-storage-platform.html

https://docs.azuredatabricks.net/_static/notebooks/delta/optimize-python.html

https://spark.apache.org/docs/latest/sql-migration-guide-hive-compatibility.html

https://databricks.com/blog/2020/03/16/security-that-unblocks.html

