
MICROSERVICES
ARCHITECTURE FOR
MODERN DIGITAL PLATFORMS

Microservices Architecture is becoming the mainstream services-based integration model and the de-facto standard for
services development for enterprise applications. As enterprise applications tend to become complex, demanding

microservices.

AN INTRODUCTION TO MICROSERVICES

DRIVERS AND THE MOTIVATION FOR MICROSERVICES ARCHITECTURE

•

•
•

can be built
•
•
•

• User Interface:

• Integration:

• Business services: Business services are implemented

• Security:
authentication and authorization.

•
can be built

•
•
•

microservices as “Microservice
architectural style is an approach to
developing a single application as a
suite of small services, each running

in its own process and communicating with lightweight

are built around business capabilities and are inde-
pendently deployable by fully automated deployment

management of these services, which may be written in

KEY TENETS OF MICROSERVICES

• Modularity:

• Single functionality principle:
• Stateless:
• Independent deployment and independent scalability:

• Self-containment:

• Resiliency:

circuit breaker pattern, the fault tolerance can also be enhanced.
• Loose coupling:

libraries.
• Smart Endpoint and dumb pipes:

TWELVE-FACTOR APPS AND MICROSERVICES

-
-

-

TABLE 1 SOLUTION COMPONENTS FOR 12 FACTOR APPS

Codebase
in revision control,

Dependencies
isolate dependencies

Build and packaging libraries such as Maven, Gradle and npm

environment

Backing services
as attached resources

Backing services such as storage, database or an external

Build, release, run
and run stages

Processes
one or more stateless
processes stateless authentication and authorization.

FACTORS BRIEF DETAILS
(Ref: https://www.12factor.net/)

MICROSERVICE ECOSYSTEM COMPONENT

TABLE 1 SOLUTION COMPONENTS FOR 12 FACTOR APPS

Port binding
binding

process model

Maximize robustness

Keep development,
staging, and production
as similar as possible

Logs
streams

Admin processes

FACTORS BRIEF DETAILS
(Ref: https://www.12factor.net/)

MICROSERVICE ECOSYSTEM COMPONENT

ADVANTAGES OF MICROSERVICES

Microservice architecture is a preferred option for modern digital architecture as it is possible to design and develop

• Agile delivery:

• Development models support distributed teams developing the

•

• Headless integration model:

• Token-based security:

•
• Extensibility:
• Independent scalability:

• Multi-speed IT model:

• Decoupling and loose coupling:

• Cloud readiness:
containers or over Cloud-based virtual machines.

• Open standards:
• Containerized microservices can be leveraged for high performance and

• Enabler for large and complex applications: Microservices architecture can be leveraged for developing large and

• Resiliency and fault tolerance:

• Independent development and deployment:

•
architecture.

MICROSERVICES ARCHITECTURE

MICROSERVICES REFERENCE ARCHITECTURE

USER EXPERIENCE LAYER

CLOUD ECO-SYSTEM

Web Application
Applications

Mobile Apps Kiosks

ROUTING, LOAD BALANCING & CACHING

API Gateway

Service Discovery Load Balancer Caching Circuit Breaker

2

DEVOPS5

Automated
Testing

Release
Management

Automated
Deployments

Deployment
Pipelines

Source Control
Management ProvisioningContinuous

Build

MONITORING & NOTIFICATION6
SLA/Threshold Health check

Monitoring
Automated Alerts Availability

Reports
SLA

Monitoring
Monitoring
Dashboard

4

CONTAINER ECOSYSTEM

Core Container Services

Container
Security

Container
Orchestration

Image
Repository

Container Load
Balancing

Container Cluster
Management

Auto-scalable Containers

Microservice Service DB Microservice Service DB Microservice Service DB Microservice Service DB

SECURITY

Authenti-
cation

Single
Sign on

Authori-
zation

3

Identity
Store

Figure 1: Microservices Reference Architecture

USER EXPERIENCE LAYER

ROUTING, LOAD BALANCING AND CACHING

•

etc. are implemented here.
• Service discovery:

• Load balancer:
•

• Circuit breaker:

CONTAINER ECOSYSTEM

• Container security:

•

• Container cluster management:

• Image repository:
•

• Load balancing:
distributes the load to various containers.

SECURITY

resource access.

DEVOPS

-
ment pipeline, source control management and provisioning.

MONITORING AND NOTIFICATION

A sample microsevice interaction is given in Figure 2.

Figure 2: Sample Microservice Interaction Diagram

CLOUD NATIVE MICROSERVICE FRAMEWORK – SOLUTION COMPONENTS

Auth Server

Token Request

Token Request

Customer
Service

JWT Token
Repo

NFS

Shopping Cart
Service

Service

Proxy Server

Discovery
Service

Item Catalog
Service

Http/s Rest Call

Register

 Data

Register

Register

Http/s Rest Call

Http/s Rest Call

Discover

TABLE 2 SERVICE DETAILS

to access the above business service

INFRA SERVICE DETAILS

We have given the sample solution components and product stack in table 3.

CLOUD DEPLOYMENT ARCHITECTURE

-

AMAZON WEB SERVICES

• Cloudfront CDN:
geographies.

• S3 Bucket:

• Custom Services Layer:

TABLE 3 SAMPLE MICROSERVICES PRODUCT STACK

Microservice

Monitoring

Circuit Breaker

Wiremock

ARCHITECTURE COMPONENT SAMPLE PRODUCT STACK

Figure 3: Sample AWS-based Microservices Deployment Architecture

AWS-BASED MICROSERVICES DEPLOYMENT ARCHITECTURE

Users

External Services

Amazon
Route 53

Rest Call

Direct connect gateway

Amazon
CloudFront –

Primary region

Amazon API Gateway
with WAF support

AWS IAM AWS
IAM

Application
Load

Balancer

S3 – for static
content

Enterprise
A

pplications

Amazon
CloudWatch

Direct Connect
Gateway

Amazon API
Gateway with
WAF support

Application
 Load

Balancer

S3 – for static
content

Amazon
CloudWatch

Amazon
ECR

Containerized
Microservices

Inter region
peering

Amazon ECR

Containerized
Microservices

Amazon CloudFront -
secondary region

•

•

•

•
or Cloud.

MICROSOFT AZURE

Figure 4: Sample Azure-based Microservices Deployment Architecture

AZURE-BASED MICROSERVICES DEPLOYMENT ARCHITECTURE

Client Application

Azure Region

External Services

Azure

Microservices

Web portal

Enterprise A
pplications

Azure Monitor

AKS Cluster
 Resource Group

Azure Key Vault Application Insights

Azure
CDN

API Gateway

API Gateway
Express Route/
Site-Site VPN

WAF

Application
Gateway

L7 LB

• Azure CDN:
the content faster and closer to consumer regions.

• Web-App Services:

• API – App Services:

• Integration:

•
•
• Reduced maintenance cost –
• IaaC –

MICROSERVICES PATTERNS

DECOMPOSITION PATTERNS

• Decomposition based on business capability: Create microservices based on business capabilities. For instance, in an
e-commerce solution, the main business capabilities are order management, product promotions, service management
and others. We can create microservices based on these.

• Decomposition based on sub-domain:
microservices based on that. For instance, the order management domain has sub-domains such as product catalog,

• Decomposition based on transaction:
them. For instance, the main transactions of an e-commerce application are login, checkout, search and such; We can
create microservices for these transactions.

• Decomposition based on resources:

INTEGRATION PATTERNS

•

request routing, protocol transformation, data transformation and the aggregation of responses from multiple services.
• Aggregation pattern: When a single microservice needs responses from multiple microservices, a composite service

• UI composition pattern:

• Backend for frontend:

DATA-RELATED PATTERNS

• A single service that reads or updates data from multiple databases
• A single business transaction spanning multiple services and databases
•

•

• Command Query Responsibility Segregation (CQRS):

create immutable events.
• Saga pattern:

to order and customer service, each of these services produces and listens to each other to handle the transaction.

OBSERVABILITY PATTERN

• Log aggregation:

• Performance monitoring:

• Distributed tracing:

ing purposes.
•

CROSS-CUTTING CONCERN PATTERNS

•

• Service discovery:

• Circuit breaker: When one of the services in the request-processing pipeline fails, the circuit breaker is responsible in

• Blue green deployment pattern:

• Access Token:

• Auditing:
secure for auditing purposes.

• Exception Logging:
•

MICROSERVICES USE CASES

Mobile App Services
• Context:

•
•
•

information.
• Microservices are designed based on mobile app screens. Most mobile app screens invoked one microservice to get

Single Page Application (SPA) for B2C Application
• Context:

•
•
•
•

•
•
•
•
•

the application.properties during the build.

Multi-speed IT for legacy applications
• Context:

•
•

services.
•

•

Microservices best practices

• Naming Conventions:
perform the appropriate actions. For instance
•
•
•

• Versioning:
• Logging:

monitor the logs and errors. We should design and log unique request ids that can help us to trace a user transaction
end to end.

• Monitoring and alerting:

• DevOps setup:
• Design for failure:

• Auto-scaling:
user load.

• Circuit Breaker: Design the circuit breaker pattern to handle the service exception and fallback to default service
response.

•
• Business functionality:
• Independence:

• Coupling and Cohesion:

• Governance:
validation.

• Distributed Design:
decomposition, clean interfaces for services and appropriate database for each service.

• Automation:

ABOUT THE AUTHOR

spectrum of digital technologies including, enterprise portals, content

PhD degree in computer science and has authored eight technical books

can be reached at

������������ ��� �� ������� ����������� ����������������������� ���������� �������� ����� ������������
�
�������
���� ������
���� ���

��������� ��������� �������� ������
���� ������������ ���� ��
���	�� �
����� ��� ��
�������� �������� �������������� ��� �� ��������
�
�����
���������
���
������
����������������������������
����
������
�������������������������������
��
��������������
����
����
��
�����������������
������������������
��
��
��
�������
��������
���������
���
������� ����������������
��
����
���� �
������������ ��
������
�� ����� �� �����
����� ��������
���­��� ��
����������
���
����
��������­��������������������
��������������
�����������
����������
������������
��������������������
������������������
����� ������
� ��������� ����������� ���� ������
���� �
�����
������� ��� ������� ��
� ��
�� ����
��������
����������������������������������

