
Application
Modernization
Using Microservices
Architecture

1. Scope of this white paper

2. Application modernization

3. Decompose the monolithic application

4. Microservice architectural consideration

5. Implementation approach

6. Deployment architecture considerations

Table of Contents

these processes. The IT landscape of any business is complicated and integrated with each other serving

various business needs. As businesses grow and their customer base increases, new lines of businesses are

added which stretch the existing IT applications and infrastructure to their limits. The older systems start

displaying resource limitations and became costlier to scale and maintain. This results in a lack of agility to

respond to changing market needs and calls for enterprise application modernization. Legacy applications

typically are monolithic with a 3-tier architecture which results in the lack of agility and scalability. Today,

microservices architecture is commonly used for digital projects as well as application modernization. This

white paper, will talk about application modernization by using microservices architecture and the

implementation approach.

Scope of This White Paper

Application
modernization has
several aspects, but let
us consider these
three main aspects:

1. Architecture

2. Infrastructure

3. Methodology

Application Modernization

A System Architecture in its simplest form

API Layer

1

Fu
nc

on

N
FR

In
te

gr
a

on

Se
cu

rit
y

Microservices

Architecture

Infrastructure
On Prem

App Server Cluster
DB Servers Cluster

Internal N/W + Public
Proxy

On Prem
Virtual machines

Hypervisors
Internal N/W + Public

Proxy

Cloud IaaS
On Demand HW

 and Clusters
Virtual Networks and

Infra as code

Cloud
PaaS, SaaS

Managed Service
Managed Infra

Methodology

Timeline

Application1 Application1 Application1D
B

Co
n

g

D
B

Co
n

g

D
B

Co
n

g

CDM Enterprise Service Bus

Third Party
Application

Third Party
Application

Process Executions Transformation Protocol Translation

Application
Layer

Integration
Layer

API Layer/
DMZ

Waterfall Agile
Agile

DevOps DevSecOps

Monolith SOA Microservices

applications became too huge to manage with various integrations as it evolved to support all business

areas. This also made it necessary to modernize the hardware with virtual machines. In spite of the SOA’s

promise, it is becoming a bottleneck for application scaling as it is unable to meet the workload needs and

basic requirements like on-demand scaling, reduced testing cycles, cost reduction, and faster

time-to-market.

Microservices architecture is quickly evolving to address these challenges by designing applications as a

suite of loosely coupled services that can be developed, deployed, and scaled independently of one

another. Microservices, as the name suggests, are micros. It deals with one functionality and possibly one

DB (database), deployed as containers running on a container orchestrator that can run multiple instances

of the container as per the scalability needs. Changes to or adding additional functionalities are quicker

and with small test cycles. It does not need a large team to work on changes or new functionalities. Small

team size also ensures on-time, defect-free deliveries, which reduces management overhead. This also

Now, let us discuss how the applications are modernized across these three aspects. As application

The below sections discuss about how we can approach two aspects of application architecture:

• Decompose the monolithic application

• Microservice architectural consideration

2

How to start

prise

become time consuming. This is resulting in multiple down times and performance degradation with a lot

Ar

maximum re-use of the existing source code.

Microservice

Microservice architecture has evolved from SOA principles where a big application is divided into a

collection of loosely coupled services that interoperate and scale to serve both the functional and

non-functional needs. Now, the question is how to decompose the monolith application, which did not

Let us be open minded - apart from the common approaches, conclusions, and best practices available, it is

patterns to decompose the existing application.

Decompose the Monolithic Application

However, this may not resolve all the issues that we have discussed already - especially precise functional

scaling, database scaling, modern security, request tracing, and aggregated logging requirements in a

distributed environment.

3

EAR

WAR
Can decouple?
Containerize?

Scalable?

Can decouple?
Containerize?

Scalable?

Deploy multiple instances

Deploy multiple instances

WAR WAR JAR

JAR JAR JAR

Strangler pattern

You can take a relatively less risky approach by incrementally transforming the big monolithic application

to microservices architecture by using strangler pattern approach. This pattern can be looked at more from

the implementation perspective too. On a high level, take smaller functions from the modularised monolith

application and redesign build, provision to use as microservices; and retire monolith functionality.

demands co-existence of monolith and microservices until all functionalities from monolith are moved to

Domain driven design

The migration of a big monolithic application to a microservice architecture is a promise made by IT to

design holds the key to success with a forward-looking vision with a �ve to eight year timeline.

In domain driven design approach, we divide the functionalities based on the domains they serve with a

domain objects [aggregates] and the entities and avoid chatty services. In subdomain decomposition, we

will go a step deeper, where we decompose the applications based on subdomains in each business

domain with loosely coupled services adhering to common closure principle. For example, a business in

the manufacturing and retail domain, may have major domains, such as manufacturing, warehouse and

retail. In retail, it may have order, price, customer, loyalty, etc.

To decompose monolith to microservices in domains and subdomains, it is good to follow the below

mentioned steps at a high level:

1. Detailed domain analysis

stage. Do not rush as this step may consume some time

4. Identify access patterns of the domain entities

5. Identify orchestration needs of the entities as per access patterns

Implementing DDD approach directly in a big bang way has a high initial risk approach. The chances of

failure are higher when converting the existing production application to microservice based architecture

in a single shot. The risk increases multiple folds, considering the non-clean legacy coding patterns and

4

have multiple functionalities and deal with one or more underlying databases.

Microservices, on the other hand, deal with single functionality and mostly and possibly one database.

smaller activities or steps. But it does this to achieve its functionality. The primary goals of microservice

architecture are resilient scalable services and providing agility to business through quick changes.

The scope of this white paper does not include how to implement the above. That is a topic for another time.

Architectural principles for microservices are

• Single DB

• Failure isolation

• Fault tolerant

• Discoverable

Non-functional requirements to be catered in
the microservices design are

• Autonomous characteristic

• Scalability

• Aggregated logging

• Security

• Observability

• Monitorability in various aspects

Microservice Architectural Consideration

5

Let us discuss the strangler pattern implementation approach, as this is a better and safe implementation

modern microservice architecture, which can still be a part of a business domain as per our DDD approach.

Once the functionality is developed, tested and ready to use, strangle the same functionality in monolithic

application and route the requests to the newly built microservice.

Advantages are

• Less risky and more stable application migration

• Zero business impact, gradual, and silent migrations

• Can implement test driven development methodologies

• Co-existence of monolithic and microservices

Strangler pattern implementation

Implementation Approach

6

Monolith
Application Design Build

Test Use

Test Use

De-commission
Monolith

Functionality

Microservices

New
Functionalities

Decommission
Monolith

Migrate all Monolith
functionalities to

Microservice

2. The right use of synchronous and asynchronous communication patterns and service interactions

3. Architecture catering to all non-functional requirements with minimal violations to microservice principles

4. Independent scalability needs of the functionalities while packaging

5.
important as the microservice data model may change from the canonical data model used across the domains

6. Building a strangler facade for routing the calls to legacy or modern as we migrate each functionality

7. dernize it according to the new architecture. If required, migrate in parallel with the

backend functionality

8. Data layer migration to move from legacy design to support microservice architecture and gradual migration
of the data

9. Data synchronization [use either ‘data pump’ approach or API to access ‘get from source’ approach] and
reconciliation process during co-existence between legacy data and modern database/tables

10. Transacti
transaction may not work as we deal with multiple services. Microservices adhere more to distributed

the Saga pattern where transactions are committed eventually through event bus and in case the transaction fails,
push a rollback compensatory transaction. [There are several approaches for event bus implementation - using a

11. age of application and external cache. Application cache or bundled or side car cache can be used in
case only one instance of the service needs the data from cache. In case multiple instances of a service
need access to an in-memory object [especially in cases where sticky sessions are not used] thus
reducing the data access time from DB, then use external cache

12. There are chances of each functionality to have some unforeseen dependency. You need to have a
stronger design call and adhere to overall microservice interaction principles. You should avoid moving
to easier to implement solutions violating scalability, independent, and lose coupling principles

13. Most of the legacy applications tend to read data from various back-end domains. This demands the need to

that can only query (read) the data from various databases to serve a data request from the client

In the strangler approach, we need to identify the application functionalities which we need to start initially.

this especially when migrating to a cloud-based architecture] or a functionality with less dependency on

From identifying the initial functionality, this approach needs an architectural relook and you can follow the

below approach for a successful application modernization completion throughout:

7

Microservices can be deployed in various ways. Let us discuss the latest, most used, and not very complex

ways that cater to all the needs and principles on production levels. Deployment architecture must be

considered and included while designing the services to avoid over-architecting and doing a lot of coding

Deployment Architecture Considerations

Containerised deployment

- Microservices are one atomic unit that is made to run on any platform. All libraries and dependencies

should be bundled with each service.

it together.

- Out of the above list of containerizing tools, Docker is a widely used tool that can containerise

- Once the code is containerised, it is stored as a docker image in a docker image repository. Docker

hub works seamlessly with docker platform.

Container orchestrator

To run the docker image, container orchestrator is used. Container orchestrator adds more functionalities

like Network Management, Container Instance Management, Failove r, Health Monitoring, Service Discovery,

Scaling, High Availability, Security, etc.

Out of the tool list, Kubernetes is a container orchestrator that brings many things by itself, most used

either in managed form or by itself. Kubernetes can integrate with docker image repository and take the

• Pod YAML
• Deployment YAML

Pod YAML has information about the docker image and internal port; Deployment YAML contains [service

YAML can also be used, but it is not a recommended production approach] networking information port

mappings, etc.

Kubernetes brings networking capability that is pod-to-pod communication and allows the external world

• Scalability

• Load balancing

• High availability

• Modularity

• Security

• Storage, etc.

8

Service mesh

addressed outside the code as far as possible. Deploying services with service mesh helps achieve this.

Alongside container orchestrator service, mesh makes many of the non-functional requirements quite easy

observability, and security.

Out of the list, Istio is a mature service mesh and works well integrated with Kubernetes container

orchestrato r. So, let me explain how we can achieve some of the common functionality with Istio.

Istio is a well-designed, pre-integrated set of many smaller tools and applications that are:

• Prometheus

• Kiali

• Jaeger, etc.

the non-functional-requirements of microservices.

Istio architecture has two planes:

• Data plane

• Control plane

The data plane is where the sidecar proxy sits within each pod. The control plane has below components:

envoy proxy

c

c

r

with OpenID Connect auth providers

• Mixer: implements policies for telemetry

Security

headers from client to authenticate the client request and it can pass this information to underlying

containers too. In between the pod communications, Istio can apply mTLS [mutual TLS] for encryption and

security by applying policy.

9

Container Images

Observability, monitoring, tracing, and logging

are sent to the control plane. Below are the tools that come into action to cater observability

• Logging: Fluentd

• Tracing: Jaeger [OpenTracing]

• Service mesh observability and visualising: Kiali

Container platform

Container platforms provide platform as a service for container orchestration.

opinionated way to automate almost all the concerns we discussed above - from containerizing to using the

networking plugins.

high level how services are developed, deployed, and accessed at a glance.

Deployment Architecture Diagram

10

OpenShift
Image registry

OpenShift CI/CD
pipeline

OpenShift Web
console

OpenShift CLI

OpenShift etcd

some other time.

DevSecOps

It is the methodology change from waterfall to agile to DevOps and DevSecOps which makes one of the

primary business goals possible, i.e., achieving business agility by faster time-to-market solutions.

agile sprints.

talked about the docker images and running containers out of docker images on container orchestrator such

,

,

and as dependencies] to production. This stresses the need for vulnerability and other inside security

threats scanning.

At a high level, let us see how we can implement this. I have tried to simplify as much as possible and

Consider CI/CD pipelines [implemented with Jenkins as an example of a popular tool] having static code

hooks to auto building and deploy. You need to include vulnerability scanning too in CI/CD DevOps pipeline

for security scanning of the code as a basic step.

Let the AppSec team or security team investigate the reported issue on each build and do the triage if

In short, this is the DDD on DevOps and Agile methodology to assure continuous secure integration and

delivery of the user stories against the use cases.

11

Conclusion

Application modernization using microservice involves

various steps and many decisions must be taken on

various layers. Do not rush, plan it properly, select the

right tools, select the right cloud partners, use cloud

features to avoid re-inventing the wheel, calculate the

cost including cloud usage costs, and as far as possible,

be open to using cloud environments to optimize usage.

The microservice maturity model should be considered

along with the IT roadmap and consider using an Open

API driven approach.

Abbreviations used

Transport Layer Security

WAR

JAR

TLS

CRUD

Nicy f ocuses on delivering application architecture and strategies with advanced

microservices patterns and tools for scalable, reliable, and quicker applications.

He has in-depth experience of working on cloud migration and application

modernization using microservices architecture.
Nicy Mokkath,

Senior Architect

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to reimagine business models, accelerate

innovation, and maximize growth by harnessing digital technologies. As a digital transformation partner to more than 700 clients, LTIMindtree brings extensive

domain and technology expertise to help drive superior competitive differentiation, customer experiences, and business outcomes in a converging world. Powered

by 84,000+ talented and entrepreneurial professionals across more than 30 countries, LTIMindtree — a Larsen & Toubro Group company — combines the

industry-acclaimed strengths of erstwhile Larsen and Toubro Infotech and Mindtree in solving the most complex business challenges and delivering

transformation at scale. For more information, please visit https://www.ltimindtree.com/

