
Stay Ahead of
Security Vulnerabilities
in Open Source Software Components

Point of View

by Rakesh M S and Vengadesh Babu

Contents

01 Introduction 03

1.1 Role of Open Source Software in Enterprise

 Application Development

03

1.2 Challenges in Keeping the Open Source

 Components Secure

04

0502 Suggested Practices
2.1 Enforce Solid Security Practices 05

 2.1.1 Keep Track of Open Source Components 05

2.2 Establish a Strong Open Source Software

 Usage Policy

10

 2.1.2 Proactive Identification of Vulnerabilities 06

 2.1.3 Include Component Patching as Part of

 Regular Product Development Plan

07

 2.1.4 Replace Retired Open Source Components 08

 2.1.5 Upgrade to Latest Stable Version of a

 Software as Quickly as Possible

09

 2.1.6 Mandatory Vulnerability Assessment and

 Penetration Testing

09

2.3 Bring Tools to Automate the Process 11

1403 Conclusion

The usage of open source software components in enterprise applications have

grown over the years. Organizations have greater range of responsibility to protect

the software components, including the external open source components that they

use. Security weakness in enterprise applications poses huge risk, potentially

exposes the organization’s data and impacts businesses at a greater scale. But many

organizations are not prepared to deal with open source software security threats. In

this paper, we cover key best practices to keep the open source components secure.

Introduction

03Stay Ahead of Security Vulnerabilities in Open Source Software Components

01

Role of Open Source Software in
Enterprise Application Development

1.1

Open source software plays a key role in enterprise application development

today. According to Open Source Security & Risk Analysis (OSSRA) report

published by Synopsys in 2020, 99% of codebases audited in 2019 contained

open source components, which contributed to 70% of overall code base.

There are many reasons to use open source over proprietary. Major reasons

are lower cost of ownership, faster access to latest innovations, higher

overall quality, and ease of customization.

As the usage increases, open source software plays a major role in the

overall security posture of an enterprise application. It is widely believed that

open source software is more secure than proprietary, primarily because

more eyes would have seen or reviewed the code, hence there is a lesser

possibility of hidden flaws. But major security vulnerabilities reported in

04Stay Ahead of Security Vulnerabilities in Open Source Software Components

open source software like Heartbleed and Shellshock, which allowed

attackers unprecedented access to millions of affected servers had existed

many years without notice. As per Synopsys, 75% of codebases audited

contain open-source components with known security vulnerabilities. It is

an eye-opener that organizations continue to struggle in tracking and fixing

open-source vulnerabilities effectively.

Challenges in Keeping the
Open Source Components Secure

1.2

Organizations face multitude of challenges to keep open source modules

secure. Some of the major issues are listed below:

No well-defined process and policy established

No full visibility of all the open source components and dependencies in use

Unavailability of tools to manage open source security efficiently

Automatic patch updates are not available

Emphasis on feature releases over security updates

Even though patch management processes are around for many years, it is

questionable if organizations are following them effectively when it comes

to open source software components. Following are some of the

recommended practices to effectively manage security of open source

software components in an application.

Suggested Practices

05Stay Ahead of Security Vulnerabilities in Open Source Software Components

Enforce Solid Security Practices2.1

2.1.1

From both security & compliance standpoint, it is critical to know all the

open source components and its dependencies for an application. When a

software component relies on another one to function, then it is called a

software dependency. Even for a simple application, there can be multiple

levels of dependencies where security vulnerabilities could be hidden. It is

recommended to make an inventory of all the software

modules/components and keep them updated on a regular basis.

Depending on the language/technology, we have different options. Let us

consider Python, where we have a native package manager to extract the

dependencies. The command ‘pip freeze’ will list all package dependencies

Keep Track of Open Source Components

02

of your application. In addition to Python package manager, we have

alternative tools such as pipdeptree and pipenv, which offer additional

functionalities such as identifying conflicting dependencies, package

dependency views, etc.

Like Python, for Javacript-based applications, we can make use of a native

package manager (NPM) command ‘npm ls’ to extract all dependencies.

There are several build automation tools like CMake, Maven, etc. can also

help us in extracting all the packages and dependencies.

06Stay Ahead of Security Vulnerabilities in Open Source Software Components

2.1.2 Proactive Identification of Vulnerabilities

There is no single source to refer reported vulnerabilities in an open source

software. The following sources covers majority of publicly disclosed

vulnerabilities:

Public Vulnerability Databases

Common Vulnerabilities and Exposures (CVE)

National Vulnerability Database (NVD)

Vulnerability Databases from Security Product Vendors

Security Advisories from Software Maintainers or Community/Vendor

Bug Trackers

There are tools available such as vulnerability scanners which help you scan

the application for identifying vulnerable components against these sources.

For example, ‘NodeJsScan’ is a tool which helps to identify known

vulnerabilities in a Node-based application. Similarly, ‘RetireJS’ works with

JavaScript application, and ‘Safety’ for python-based application. There are

tools which have the capability to support multiple technologies and offer

end-to-end security solutions which are covered in section 2.3.

We need to keep in mind that there is no single tool to comprehensively

identify all vulnerabilities since there is no single source for tracking all

vulnerabilities reported. But with a strong open source usage policy to allow

only reputed open source components, we can maintain a good level of

security.

07Stay Ahead of Security Vulnerabilities in Open Source Software Components

2.1.3
Include Component Patching as Part of Regular
Product Development Plan

Maintaining an inventory of all the open source libraries and identifying

vulnerabilities is only one part of the puzzle, but keeping them up-to-date is

another crucial step. Dedicated efforts should be allocated for this activity to

identify components with reported vulnerabilities and apply the right

patches as quickly as possible. To do so, we need to have a security-focused

patch management practice tied to our regular product development plan.

Once a vulnerability has been identified in an open source component, add

that to the development team’s backlog, it should be treated with utmost

importance. Regression testing should be done after the patching to make

sure that there is no impact to the existing functionality of the application.

We need to prioritize updates based on severity of patches so that critically

vulnerable modules are updated sooner. It is recommended to have a formal

prioritization process in place involving both security and development

teams, so that a decision can be taken quickly on which patch/update

needs to be applied sooner than later.

2.1.4 Replace Retired Open Source Components

08Stay Ahead of Security Vulnerabilities in Open Source Software Components

It is critical to identify and replace software components, which are retired or

no longer supported by vendor/community. Keep using these non-

supported components will pose significant security threat. The method to

identify retired modules differ based on technology/frameworks/languages.

For example, in python, we can use the native package manager command

'pip list --outdated' or more advanced tools like 'pipe-check' to identify

outdated modules in your environment.

We should have replacement plan for the identified outdated/retired

modules. Possible options are:

A
Replace the module

with latest supported

version (if available)

B
Replace it with

alternate components

(if available)

C
Develop one in-house

(if above options are

not possible/feasible)

Whichever the option we choose, it would require dedicated efforts from

the development team. The efforts should also include regression testing to

make sure the updates not impacting the application. Continue using

unsupported modules is a huge security threat. Hence, we should enforce a

security policy or a checklist to block releasing software with

unsupported/retired software components.

It is also vital to identify modules which are no longer in use and remove it.

The presence of obsolete modules will increase the security risk. For

example, let us consider a Python-based application, where keeping an

unused library reference in the requirements file will lead to installing it on a

target machine. Keeping all the unused modules will bring unnecessary

burden to the patch management process. There are tools available to help

us in identifying unused modules like depcheck for npm javascript

packages, Apache maven dependency plugin, and so on.

09Stay Ahead of Security Vulnerabilities in Open Source Software Components

2.1.5
Upgrade to Latest Stable Version of a Software
as Quickly as Possible

Usage of older version of software will potentially end up in scenarios

where the version is reaching its end-of-support (EOS). In this scenario, we

will not have enough time to migrate to latest version before EOS and leads

to security risk. Hence, it is recommended to migrate to latest version of

open source components as fast as possible. There are additional benefits in

using latest version. For example, along with feature or functionality

enhancement, the latest version of software usually contains direct security

advancements or indirect security improvements due to better architecture,

technology, etc.

2.1.6
Mandatory Vulnerability Assessment and
Penetration Testing

Even if we have ensured that the individual application components are

secure, there can be scenarios where a simple misconfiguration potentially

create a security lapse. Vulnerability Assessment & Penetration Testing

(VAPT) helps to uncover hidden security loopholes that exists in the entire

application.

10Stay Ahead of Security Vulnerabilities in Open Source Software Components

The Vulnerability Assessment is performed to evaluate the application to

identify if it is susceptible to any known vulnerabilities. If a vulnerability is

identified, then we can follow suggested solution or best practices to

address them.

Penetration Testing is an ethical hacking technique, which simulates the

actions of a malicious external or internal actor with an attempt to get

unauthorized access to application or data.

It is recommended to enforce VAPT with the following conditions,

For every major release of the application

On a periodic basis. For example, every six months to uncover new types

of vulnerabilities that are potentially introduced as part of the minor

releases

Establish a Strong Open Source
Software Usage Policy

2.2

If we do not have any mechanism to control on what open source components can

be used, developers may end up using potentially vulnerable or untrusted software.

The development team may not always know the level of security and community

support of different open source components. There are other issues like potentially

violating license terms if we do not define and control the type of opens source

license allowed to consume.

When defining an open source software usage policy, the following parameters can

be considered (but not limited to)

11Stay Ahead of Security Vulnerabilities in Open Source Software Components

Type of open source components can be used

Conditions such as reputation, level of community or commercial support

Restriction on component age and end-of-support components

Prohibit components with known vulnerabilities

License types that are acceptable

Approval mechanism

It is advisable to have a software compliance group, who is responsible to make sure

if the software meet all conditions defined in the open source usage policy and

provide necessary approval for consumption.

Bring Tools to Automate
the Process

2.3

Even though above steps can be done manually, it is not scalable especially when

we have complex applications using hundreds of open source components. There

are open source & proprietary tools available to automate many of the steps

described above, starting from identifying open source components used,

identifying those with vulnerabilities and even suggesting steps to mitigate the

vulnerabilities. Some of them have capability to seamlessly integrate with the

software development life cycle, so the development team can routinely and

effectively use them.

Following are the various type of tools which can be used to automate part of the

process described above.

12Stay Ahead of Security Vulnerabilities in Open Source Software Components

ASoftware Composition Analysis (SCA) Tools

SCA tools help to automate many of the steps described above such as,

Identifying all software components including dependencies

Discover all open source components and license information

Detect publicly disclosed vulnerabilities in open source components

Some advanced SCA tools can even help in open source component selection,

license compliance, approval workflow, continuous tracking and integrate with your

build/release pipeline.

Some commonly used open source SCA tools are Snyk Open Source, OWASP

Dependency-Track. There are proprietary tools available from Veracode, Black Duck

Software, Whitesource, Sonatype, etc., which provides end to end solution covering

security, licensing & compliance.

We should carefully select the tools-based on the variables such as programming

language or technology support, coverage of vulnerability databases & security

advisories, integration capability with our CI/CD or build systems, type of license &

support model, etc.

13Stay Ahead of Security Vulnerabilities in Open Source Software Components

BStatic & Dynamic Application Security Testing Tools

Static Application Security Testing (SAST) tools examine the code or even binary file

to identify potential vulnerabilities. Dynamic Application Security Testing (DAST)

Tools simulate a real attacker approaching the application from outside on a running

application.

Some examples of open source SAST tools are JSHint which supports Javascript,

NodeJSScan for Nodejs based applications, Bandit for Python. There are commercial

products available which supports multiple languages and some of them offers

SAST, DAST & SCM bundled. Some examples of commercial offering are HCL

AppScan, Veracode Application Analysis solution, Microfocus Fortify Application

Security and Synopsys Application Security Testing.

A combination of SAST, DAST and SCA tools will help to cover all our application

security bases effectively. Integrating these tools in your DevOps lifecycle will

help you to better prepare to adopt DevSecOps, but that is another topic for

another time!

Conclusion

14Stay Ahead of Security Vulnerabilities in Open Source Software Components

03

It is not a secret that open source software is an inevitable component of most of the

enterprise applications. Open-source software has its fair share of advantages, but

when it comes to security, the responsibility falls into us to ensure that there are no

vulnerabilities hidden in our code base.

Enterprises that do not have good security practices should revisit to formalize one,

and ensure it is being followed strictly across multiple teams, practices, or business

units within the organization. Every organizations that use open source software

should have a solid usage policy to protect them from both security threats and

potential lawsuits due to license issues. When it comes to application security, it is

virtually impossible to achieve the desired results without the help of security tools.

In this paper, we have provided key best practices along with different tools and

automation to balance the usage of open source components and adhere security

policies and at the same time to have stable ecosystem.

About the authors

15Stay Ahead of Security Vulnerabilities in Open Source Software Components

Rakesh M S
Technical Architect

Rakesh, currently working as a technical architect

in the Automation Solution Team at LTIMindtree focused

on IT automation solution design. He carries more

than 10 years of experience covering application

development and maintenance, business process

automation, and IT Process Automation. He is

passionate about technology and puts forth

efforts to solve customer problems by leveraging

technology.

Vengadesh Babu
Technical Lead

Vengadesh comes with more than 4 years of

experience in application development and

support. He is currently working as a technical lead

in the Automation Solution team at LTIMindtree. He

has involved in the development of multiple enterprise

applications/IPs which are the foundation for

many of our solutions to customers.

