
Agility Architecture
for Insurers

The insurance world is getting disrupted. The

Insurer’s traditional role of a ‘Risk Carrier’ is

shifting to more of a ‘Trusted advisor’, and they

are increasingly taking control of end-to-end

customer experience. The increased competition

is forcing them to innovate and bring in newer

products to the market very frequently. As sensor

technology is opening up opportunities for

real-time risk monitoring and loss prevention,

Insurers are forming a partner ecosystem to

provide value-added services to customers.

Technology plays an important role in this new

world. Insurers need ‘agility’ in their architecture

to constantly innovate and improve customer

experience. In their current world, a new product

release takes as long as 12-18 months after

conceptualization, while a new customer

interaction feature takes at the least 3 months.

With the speed of change, this is no longer

acceptable. They need to be able to get to

Facebook-like daily releases. Along with agility,

they also need more resiliency, as they cannot

afford to be ‘not-available’ in a constantly

connected world.

Most insurers have adopted agile practices to

improve their IT delivery; however, it is not

enough to merely follow the practices. They also

need infrastructure and architecture that

supports ‘agility’ and ‘resiliency’.

In this PoV, we have described the new agility

architecture, mostly based on Open Source stack,

that insurers can leverage to improve agility

and resiliency.

Agility Architecture is an effort to keep the architecture solution simple, and achieve maximum automation for

repeatable task around solution changes and release. This, in turn, enables the business to be agile and adapt

to the changes in time of needs.

Agility Architecture building blocks involves -

 Agile Platform.

 Agile Development Services.

 Application Patterns and Principles.

 Business and Operations Support Systems meeting objectives of an agile organization.

Agility Architecture for Insurers

What is Agility Architecture?

When we talk about Agile Platform, "Cloud" is

considered the cornerstone. As a first step

towards adopting cloud, organizations took two

major steps-

typically associated with developing and launching.

Platform as a Service (PaaS) emerged as a capa-

bility that allowed organizations to bring abstrac-

tion over the compute resources and create their

private cloud ecosystem. The platform also

allowed deployment and orchestration of appli-

cation created using supported programming

languages, libraries, services, and tools.

All major product companies have come up with

a PaaS product, for e.g. AWS Elastic beanstalk,

Google App Engine, Heroku, IBM Bluemix,

Pivotal, etc. With the growing open source

ecosystem of cloud related framework and tools,

you can actually building your own PaaS.

Given below is a quick representation of all the

major building blocks of PaaS. In the open source

ecosystem, you can either choose a PaaS

product. For e.g. Cloud Foundry, or pick and

choose the best of the framework and create a

connected PaaS as shown below -

For an enterprise, which built their own applica-

tion, they needed a platform that allows custom-

ers to develop, run, and manage applications.

This is to be done without the complexity of

building and maintaining the infrastructure,

Step 1 - Virtualizing their physical infrastructure.

This allowed organizations to dynamically

create new virtualized environment without

having to wait, while procurement of new

systems work out. Infrastructure as a Service

(IaaS) was leveraged to manage and control

the underlying infrastructure and provision of

virtualized cloud infrastructure like network,

servers, operating systems, and storage.

Step 2 - Adopting packaged software via

Software as a Service (SaaS) model. SaaS uses

the web to deliver applications that are man-

aged by a third-party vendor, and whose

interface is accessed on the clients’ side.

Development Services

Cloud Services
Management

Business Support
Systems

Operations Support
Systems

Software
as a

Service

Change Management
Continous

Intergration and Delivery
Source Control &

Artifact Repository
Dev Tools,

Framework, IDE

Infrastructure Services

Platform Services

Infrastructure (Physical + Facility)

Application
Services

Agile Platform

Any platform is only powerful as its ecosystem of

the application services. Application services are

necessary for rapid application development, and

are cloud-native. Given below are some of the

common services that are being leveraged by the

enterprise application.

Platform as a Services have gone beyond the

basic application services ecosystem, and have

added additional platform services for mobile

and Internet of Things. Example of one such

open source platform is Cloud Foundry. Finally,

security is one of the major considerations of

any agile platform. This includes following

key aspects:

For an enterprise to effectively deliver its business

solutions in an agile manner, development

services need to have key components -

Authentication - A way to authentication by

augmenting username/password credentials,

with a hardware or software RSA/-

JSON-based token.

Identity management - An effective identify

management solution to manage the

consumer usernames and/or integrate to

an in-house system such as Microsoft

Active Directory.

Security monitoring - Tools to track and

identify any potential security issue.

Continuous integration and delivery.

Version control and artifact repository.

Development tools, framework, and IDE.

Change management.

Agile Development Services

Application Orchestration

Container Orchestration

Job Scheduling

Containerization

Resource Management

Provisioning

Machine Management

BOSH

Cloud Foundry

OpenStack, vSphere, VirtualBox

Ansible, Puppet, Chef,
Vagrant

Mesos

Docker, Rocket, Mesos

Kubernetes, Chronos

Kubernetes, Marathon,
Swarm, Fleet, Lattice, ECS

Cloud Foundry, Heroku,
Openshift

Build your Own PaaS

Agility Architecture for Insurers

Use declarative formats for setup automation, to minimize time and cost for new developers joining

the project.

Have a clean contract with the underlying operating system, offering maximum portability between

execution environments.

Are suitable for deployment on modern cloud platforms, obviating the need for servers and

systems administration.

Minimize divergence between development and production, enabling continuous deployment for

maximum agility.

Containers are portable, effectively running on any hardware that runs the relevant operating

system. That means developers can run a container on a workstation, create an app in that container,

save it in a container image, and then deploy the app on any virtual or physical server-running the

same operating system - and expect the application to work.

Applications need to adopt new patterns and principles that will be able to leverage the capabilities of the

agile platform. These cloud-native design or architecture were designed, considering following principles

in place:

The principles described above were formulated by Heroku in form of "12 factor app". The principles

discussed in 12 factor apps are given below:

Codebase
One codebase tracked in
revision control, many
deploys.

Dependencies
Explicitly declare and
isolate dependencies.

Config
Store configuration in
the environment.

Backing Services
Config
Treat backing services as
attached resources.

Build, release, run
Strictly separate build
and run stages.

Stateless process
Execute the app as one or
more stateless processes.

Port binding
Export services via port
binding.

Concurrency
Scale out via the process
model.

Disposability
Maximize robustness with
fast startup and graceful
shutdown.

Dev / Prod parity
Keep development,
staging, and production
as similar as possible.

Logs
Treat logs as event
streams.

Admin processes
Run admin/management
tasks as one-off processes.

Containers, Microservices, and Serverless Architecture

On the other hand, Serverless A capital architecture is evolving, but support for all development frame-

works may not be available. One of the main consideration is vendor lock-in - such lack of control may

manifest as system downtime, unexpected limits, cost changes, loss of functionality, forced API upgrades,

and more.

Adoption Considerations –

As the cloud ecosystem grows, it is necessary for the organization to effectively manage and service it.

There are two aspects pf enterprise services that need to enhanced or modified -

Business support systems - These processes are business-oriented and focus on the business

operations of your private agile platform. Cloud computing applications, data and IT resources are

presented to users through self-service portals. Some of the key functions are -

What tool should we consider for orchestration?

Type of containers – LxC, Docker, Mesos.

Support for current application technology – ease for Lift & Shift.

Image repository selection.

Application business layer decomposition.

Front end SPA decomposition.

Cloud vendor Azure/AWS/Google.

Moving to .NET Core and available web server support in cross-platform.

Selection of type of serverless service Cloud provider – Azure Functions, AWS Lambda.

API Gateway tools consideration in hybrid conditions.

Business and Operations Support Systems

Customer Management - This area covers the activities necessary to manage and maintain the

relationship with the cloud consumer. It deals with items such as customer accounts, complaints

and issues, customer contact information, history of customer interactions, etc.

Contract Management – It establishes service level agreements for cloud services being delivered

to customer.

Service Catalogue – It establishes a service catalog and is the primary interface for the consumer

to engage with the cloud provider.

Billing and Metering – It establishes a way to account for cloud service usage and implement

chargeback invoicing.

Reporting and Auditing - This function monitors, tracks, and logs activities performed by the

consumer, usually through the management console.

Pricing and Rating - This process establishes the price points and Tiering for the cloud services.

LTIMindtree Limited is a subsidiary of Larsen & Toubro Limited

LTIMindtree is a global technology consulting and digital solutions company that enables enterprises across industries to
reimagine business models, accelerate innovation, and maximize growth by harnessing digital technologies. As a digital
transformation partner to more than 700 clients, LTIMindtree brings extensive domain and technology expertise to help drive
superior competitive differentiation, customer experiences, and business outcomes in a converging world. Powered by 84,000+
talented and entrepreneurial professionals across more than 30 countries, LTIMindtree — a Larsen & Toubro Group company —
combines the industry-acclaimed strengths of erstwhile Larsen and Toubro Infotech and Mindtree in solving the most complex
business challenges and delivering transformation at scale. For more information, please visit https://www.ltimindtree.com/

Operations support systems -These process that are focused more on the infrastructure management

methodology for managing large numbers of highly virtualized resources. These virtualized resources

can reside in multiple locations, but still perform as a single large resource to deliver services. Some of

the key functions are -

Provisioning and Configuration – These functions deal with automated self-service provisioning

of the infrastructure and automated upgrade/replacement of capacity or components.

Monitoring and Reporting - Ongoing monitoring of the operations and cloud infrastructure is

critical to ensure effective and optimal quality of service.

Portability and Interoperability - Ensure that enterprises are not caught up in vendor lock-in

situation. This function should provide seamless ability for data portability, service interoperability

and system portability.

